Peter Geigenberger - Academia.edu (original) (raw)

Papers by Peter Geigenberger

Research paper thumbnail of Combined Metabolomic and Genetic Approaches Reveal a Link between the Polyamine Pathway and Albumin 2

Several legume seed proteins that are potentially allergenic, poorly digested by farm animals, an... more Several legume seed proteins that are potentially allergenic, poorly digested by farm animals, and/or have undesirable func- tional properties, have been described. One of these is the albumin protein in pea (Pisum sativum) called PA2. A naturally occurring mutant line that lacks PA2 has been exploited in studies to determine the biological function of this nonstorage protein in seed development.

Research paper thumbnail of Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach

Plant Biotechnology Journal, 2010

Biomarkers are used to predict phenotypical properties before these features become apparent and,... more Biomarkers are used to predict phenotypical properties before these features become apparent and, therefore, are valuable tools for both fundamental and applied research. Diagnostic biomarkers have been discovered in medicine many decades ago and are now commonly applied. While this is routine in the field of medicine, it is of surprise that in agriculture this approach has never been investigated. Up to now, the prediction of phenotypes in plants was based on growing plants and assaying the organs of interest in a time intensive process. For the first time, we demonstrate in this study the application of metabolomics to predict agronomic important phenotypes of a crop plant that was grown in different environments.

Research paper thumbnail of Combined Transcript and Metabolite Profiling of Arabidopsis Leaves Reveals Fundamental Effects of the Thiol-Disulfide Status on Plant Metabolism1(W)(OA)

In this study, we used gas chromatography-mass spectrometry analysis in combination with flux ana... more In this study, we used gas chromatography-mass spectrometry analysis in combination with flux analysis and the Affymetrix ATH1 GeneChip to survey the metabolome and transcriptome of Arabidopsis (Arabidopsis thaliana) leaves in response to manipulation of the thiol-disulfide status. Feeding low concentrations of the sulfhydryl reagent dithiothreitol for 1 h at the end of the dark period led to posttranslational redox

Research paper thumbnail of Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ADP transporter

Planta, 2003

Recently, it has been reported that tubers of transgenic potato ( Solanum tuberosum L.) plants wi... more Recently, it has been reported that tubers of transgenic potato ( Solanum tuberosum L.) plants with decreased activity of the plastidic ATP/ADP transporter (AATP1) contain less starch, despite having an increased glucose level [P. Geigenberger et al. (2001) Plant Physiol 125:1667-1678]. The metabolic alterations correlated with enhanced resistance to the bacterium Erwinia carotovora. Here it is shown that transgenic potato tubers, possessing less starch yet increased glucose levels due to the expression of a cytoplasm-localized yeast invertase, exhibit drastic susceptibility to E. carotovora. In addition, it is demonstrated that AATP1 anti-sense tubers show an increased capacity to ward off the pathogenic fungus Alternaria solani. In contrast to AATP1 anti-sense tubers, the corresponding leaf tissue does not show changes in carbohydrate accumulation. However, upon elicitor treatment, AATP1 anti-sense leaves possess an increased capacity to release H(2)O(2) and activate various defen...

Research paper thumbnail of Redox regulation of carbon storage and partitioning in response to light and sugars

Journal of Experimental Botany, 2005

Redox signals generated by the photosynthetic elec- tron transport chain are known to be involved... more Redox signals generated by the photosynthetic elec- tron transport chain are known to be involved in regulating the Calvin cycle, ATP synthesis, and NADPH export from chloroplasts in response to light. The signal cascade involves transfer of electrons from photosystem I via the ferredoxin-thioredoxin system to target enzymes that are activated by reduction of regulatory disulphide bonds. The purpose of

Research paper thumbnail of Use of Non-aqueous Fractionation and Metabolomics to Study Chloroplast Function in Arabidopsis

Methods Mol Biol, 2011

Chloroplasts are the chemical factories of plant cells because they are able to fix inorganic car... more Chloroplasts are the chemical factories of plant cells because they are able to fix inorganic carbon and -convert it to a wide-range of photoassimilates that are exported to the cytosol and other sub-cellular compartments. If the regulation of these processes is to be understood, the in vivo concentrations of a large number of metabolites have to be measured in all of these compartments separately. Sophisticated analytical approaches and continued advances in the technology of mass spectrometry coupled to a variety of fractionation and separation techniques allow the reliable analysis of a comprehensive complement of metabolites in photosynthetic tissues. Metabolomic approaches allow the multi-parallel analysis of a wide-range of metabolic intermediates and have been used for rapid phenotyping of different genotypes and environmental effects in plants. In addition to this, methods have been developed to analyse metabolite levels in different sub-cellular compartments of plant cells. Here, we describe methods for sub-cellular fractionation of Arabidopsis leaves using a non-aqueous density gradient technique, sample preparation suitable for metabolite profiling using gas-chromatography-mass spectrometry, and calculation of sub-cellular metabolite concentrations.

Research paper thumbnail of Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants

† Background and Aims Oxygen can fall to low concentrations within plant tissues, either because ... more † Background and Aims Oxygen can fall to low concentrations within plant tissues, either because of environmental factors that decrease the external oxygen concentration or because the movement of oxygen through the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants can decrease their oxygen consumption in response to relatively small changes in oxygen concentrations to avoid internal anoxia. The molecular mechanisms underlying this response have not been identified yet. The aim of this study was to use transcript and metabolite profiling to investigate the genomic response of arabidopsis roots to a mild decrease in oxygen concentrations. † Methods Arabidopsis seedlings were grown on vertical agar plates at 21, 8, 4 and 1 % (v/v) external oxygen for 0 . 5, 2 and 48 h. Roots were analysed for changes in transcript levels using Affymetrix whole genome DNA microarrays, and for changes in metabolite levels using routine GC-MS based metabolite profiling. Root extension rates were monitored in parallel to investigate adaptive changes in growth. † Key Results The results show that root growth was inhibited and transcript and metabolite profiles were significantly altered in response to a moderate decrease in oxygen concentrations. Low oxygen leads to a preferential up-regulation of genes that might be important to trigger adaptive responses in the plant. A small but highly specific set of genes is induced very early in response to a moderate decrease in oxygen concentrations. Genes that were down-regulated mainly encoded proteins involved in energy-consuming processes. In line with this, root extension growth was significantly decreased which will ultimately save ATP and decrease oxygen consumption. This was accompanied by a differential regulation of metabolite levels at short-and long-term incubation at low oxygen. † Conclusions The results show that there are adaptive changes in root extension involving large-scale reprogramming of gene expression and metabolism when oxygen concentration is decreased in a very narrow range.

Research paper thumbnail of Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers

The Plant Journal, 1999

Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Anti... more Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Antisense and cosuppression potato transformants with decreased expression of sucrose±phosphate synthase (SPS) have been used to analyse the importance of SPS for the regulation of this water-stress induced change in partitioning. (i) In the absence of water stress, a 70±80% decrease in SPS activity led to a 30±50% inhibition of sucrose synthesis and a slight (10±20%) increase of starch synthesis in tuber discs in short-term labelling experiments with low concentrations of labelled glucose. Similar changes were seen in short-term labelling experiments with intact tubers attached to well-watered plants. Provided plants were grown with ample light and water, transformant tubers had a slightly lower water and sucrose content and a similar or even marginally higher starch content than wild-type tubers. (ii) When wild-type tuber slices were incubated with labelled glucose in the presence of mannitol to generate a moderate water de®cit (between ±0.12 and ±0.72 MPa), there was a marked stimulation of sucrose synthesis and inhibition of starch synthesis. A similar stimulation was seen in labelling experiments with wild-type tubers that were attached to waterstressed wild-type plants. These changes were almost completely suppressed in transformants with a 70±80% reduction of SPS activity. (iii) Decreased irrigation led to an increase in the fraction of the dry-matter allocated to tubers in wild-type plants. This shift in allocation was prevented in transformants with reduced expression of SPS. (iv) The results show that operation of SPS and the sucrose cycle in growing potato tubers may lead to a marginal decrease in starch accumulation in non-stressed plants. However, SPS becomes a crucial factor in water-stressed plants because it is required for adaptive changes in tuber metabolism and whole plant allocation.

Research paper thumbnail of Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus

The Plant Journal, 2002

Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. ... more Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. and from two starch-deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (<10 kDa; SHG S ) and high (>10 kDa; SHG L ) molecular weight compounds. SHG S was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHG L was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non-aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHG S exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1-phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHG S and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2-glycan interaction. As revealed by in vivo labeling experiments using 14 CO 2 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light-dark regime.

Research paper thumbnail of HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana

The Plant Journal, 2010

Plants often experience challenging hypoxic conditions imposed by soil waterlogging or complete f... more Plants often experience challenging hypoxic conditions imposed by soil waterlogging or complete flooding. In rice, Sub1A, a flooding-induced ethylene responsive factor (ERF) plays a crucial role in submergence tolerance. In this study, we examined two Arabidopsis Hypoxia Responsive ERF genes (HRE1 and HRE2), belonging to the same ERF group as Sub1A. Transgenic Arabidopsis plants, which over-expressed HRE1, showed an improved tolerance of anoxia, whereas a double-knockout mutant hre1hre2 was more susceptible than the wild type. HRE1 over-expressing plants showed an increased activity in the fermentative enzymes pyruvate decarboxylase and alcohol dehydrogenase together with increased ethanol production under hypoxia, but not in normoxia. Whole-genome microarray analyses suggested that an over-expression of HRE1, but not HRE2, increased the induction of most anaerobic genes under hypoxia. Real-time quantitative (q)PCR analyses confirmed a positive effect of HRE1 over-expression on several anaerobic genes, whereas the double-knockout mutant hre1hre2 showed a decreased expression in the same genes after 4 h of hypoxia. Single-knockout mutants did not show significant differences from the wild type. We found that the regulation of HRE1 and HRE2 by low oxygen relies on different mechanisms, since HRE1 requires protein synthesis to be induced while HRE2 does not. HRE2 is likely to be regulated post-transcriptionally by mRNA stabilization. We propose that HRE1 and HRE2 play a partially redundant role in low oxygen signalling in Arabidopsis thaliana, thus improving the tolerance of the plant to the stress by enhancing anaerobic gene expression and ethanolic fermentation.

Research paper thumbnail of Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase

The Plant Journal, 2000

Sucrose export from leaves is high during the day and lower at night, when it depends on starch r... more Sucrose export from leaves is high during the day and lower at night, when it depends on starch remobilisation. We have investigated the consequences of diurnal changes of photoassimilate supply for starch synthesis and other metabolic processes in growing potato tubers. Sucrose, the levels of the transcripts for SUS and AGPS, the levels of key metabolites, and the rate of synthesis of starch and other major end products, including protein and cell wall polysaccharides, increased twofold or more between the start and end of the light period. The stimulation of starch synthesis was accompanied by an increase of UDPglucose and ADPglucose, whereas glycolytic intermediates remained unaltered, revealing that sucrose synthase and ADP-glucose pyrophosphorylase are being co-ordinately regulated. Sucrose synthase is stimulated via an increase of its substrates, UDP and sucrose. UDP increases due to an increase of the overall uridine nucleotide pool, and a decrease of the UTP/UDP ratio that occurs in parallel with a decrease of the ATP/ADP ratio and adenylate energy charge when biosynthetic¯uxes are high at the end of the day. Within the time frame of the diurnal changes, the changes in the SUS and AGPS transcript levels do not lead to signi®cant changes in the encoded enzymes. Transformants with a progressive decrease of sucrose phosphate synthase expression, where diurnal changes in leaf sugar levels were damped, exhibited a progressive attenuation of the diurnal changes of sucrose, nucleotide sugars and nucleotides, and¯uxes in their tubers. It is concluded that metabolic processes in tubers are tightly linked to the momentary supply of sucrose.

Research paper thumbnail of Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis

The Plant Journal, 1998

The original aim of this work was to increase starch accumulation in potato tubers by enhancing t... more The original aim of this work was to increase starch accumulation in potato tubers by enhancing their capacity to metabolise sucrose. We previously reported that specific expression of a yeast invertase in the cytosol of tubers led to a 95% reduction in sucrose content, but that this was accompanied by a larger accumulation of glucose and a reduction in starch. In the present paper we introduced a bacterial glucokinase from Zymomonas mobilis into an invertase-expressing transgenic line, with the intention of bringing the glucose into metabolism. Transgenic lines were obtained with up to threefold more glucokinase activity than in the parent invertase line and which did not accumulate glucose. Unexpectedly, there was a further dramatic reduction in starch content, down to 35% of wild-type levels. Biochemical analysis of growing tuber tissue revealed large increases in the metabolic intermediates of glycolysis, organic acids and amino acids, two-to threefold increases in the maximum catalytic activities of key enzymes in the respiratory pathways, and three-to fivefold increases in carbon dioxide production. These changes occur in the lines expressing invertase, and are accentuated following introduction of the second transgene, glucokinase. We conclude that the expression of invertase in potato tubers leads to an increased flux through the glycolytic pathway at the expense of starch synthesis and that heterologous overexpression of glucokinase enhances this change in partitioning.

Research paper thumbnail of Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers

The Plant Journal, 2003

We recently discovered that post-translational redox modulation of ADP-glucose pyrophosphorylase ... more We recently discovered that post-translational redox modulation of ADP-glucose pyrophosphorylase (AGPase) is a powerful new mechanism to adjust the rate of starch synthesis to the availability of sucrose in growing potato tubers. A strong correlation was observed between the endogenous levels of sucrose and the redox-activation state of AGPase. To identify candidate components linking AGPase redox modulation to sugar supply, we used potato tuber discs as a model system. When the discs were cut from growing wild-type potato tubers and incubated for 2 h in the absence of sugars, redox activation of AGPase decreased because of a decrease in internal sugar levels. The decrease in AGPase redox activation could be prevented when glucose or sucrose was supplied to the discs. Both sucrose uptake and redox activation of AGPase were increased when EDTA was used to prepare the tuber discs. However, EDTA treatment of discs had no effect on glucose uptake. Feeding of different glucose analogues revealed that the phosphorylation of hexoses by hexokinase is an essential component in the glucose-dependent redox activation of AGPase. In contrast to this, feeding of the non-metabolisable sucrose analogue, palatinose, leads to a similar activation as with sucrose, indicating that metabolism of sucrose is not necessary in the sucrose-dependent AGPase activation. The in¯uence of sucrose and glucose on redox activation of AGPase was also investigated in discs cut from tubers of antisense plants with reduced SNF1-related protein kinase activity (SnRK1). Feeding of sucrose to tuber discs prevented AGPase redox inactivation in the wild type but not in SnRK1 antisense lines. However, feeding of glucose leads to a similar activation of AGPase in the wild type and in SnRK1 transformants. AGPase redox activation was also increased in transgenic tubers with ectopic overexpression of invertase, containing high levels of glucose and low sucrose levels. Expression of a bacterial glucokinase in the invertase-expressing background led to a decrease in AGPase activation state and tuber starch content. These results show that both sucrose and glucose lead to post-translational redox activation of AGPase, and that they do this by two different pathways involving SnRK1 and an endogenous hexokinase, respectively.

Research paper thumbnail of Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system

The Plant Journal, 2002

Metabolite assays are required to characterise how metabolism changes between genotypes during de... more Metabolite assays are required to characterise how metabolism changes between genotypes during development and in response to environmental perturbations. They provide a springboard to identify important regulatory sites and investigate the underlying mechanisms. Due to their small size, Arabidopsis seeds pose a technical challenge for such measurements. A set of assays based on a novel enzymic cycling system between glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate oxidase have been developed and optimised for use with growing Arabidopsis seeds. In combination with existing assays they provide a suite of high throughput, sensitive assays for the immediate precursors for starch (adenine diphosphate glucose) and lipid (acetyl coenzyme A, glycerol-3-phosphate) synthesis, as well as pyrophosphate, ATP, ADP and most of the glycolytic intermediates. A method is also presented to rapidly quench intact siliques, lyophilise them and then manually separate seeds for metabolite analysis. These techniques are used to investigate changes in overall seed metabolite levels during development and maturation, and in response to a stepwise decrease of the external oxygen concentration.

Research paper thumbnail of Inhibition of de Novo Pyrimidine Synthesis in Growing Potato Tubers Leads to a Compensatory Stimulation of the Pyrimidine Salvage Pathway and a Subsequent Increase in Biosynthetic Performance

THE PLANT CELL ONLINE, 2005

Pyrimidine nucleotides are of general importance for many aspects of cell function, but their rol... more Pyrimidine nucleotides are of general importance for many aspects of cell function, but their role in the regulation of biosynthetic processes is still unclear. In this study, we investigate the influence of a decreased expression of UMP synthase (UMPS), a key enzyme in the pathway of de novo pyrimidine synthesis, on biosynthetic processes in growing potato (Solanum tuberosum) tubers. Transgenic plants were generated expressing UMPS in the antisense orientation under the control of the tuber-specific patatin promoter. Lines were selected with markedly decreased expression of UMPS in the tubers. Decreased expression of UMPS restricted the use of externally supplied orotate for de novo pyrimidine synthesis in tuber tissue, whereas the uridine-salvaging pathway was stimulated. This shift in the pathways of UMP synthesis was accompanied by increased levels of tuber uridine nucleotides, increased fluxes of [ 14 C]sucrose to starch and cell wall synthesis, and increased amounts of starch and cell wall components in the tubers, whereas there were no changes in uridine nucleotide levels in leaves. Decreased expression of UMPS in tubers led to an increase in transcript levels of carbamoylphosphate synthase, uridine kinase, and uracil phosphoribosyltransferase, the latter two encoding enzymes in the pyrimidine salvage pathways. Thus, the results show that antisense inhibition of the de novo pathway of pyrimidine synthesis leads to a compensatory stimulation of the less energyconsuming salvage pathways, probably via increased expression and activity of uridine kinase and uracil phosphoribosyltransferase. This results in increased uridine nucleotide pool levels in tubers and improved biosynthetic performance.

Research paper thumbnail of Dynamic Plastid Redox Signals Integrate Gene Expression and Metabolism to Induce Distinct Metabolic States in Photosynthetic Acclimation in Arabidopsis

THE PLANT CELL ONLINE, 2009

Plants possess acclimation responses in which structural reconfigurations adapt the photosyntheti... more Plants possess acclimation responses in which structural reconfigurations adapt the photosynthetic apparatus to fluctuating illumination. Long-term acclimation involves changes in plastid and nuclear gene expression and is controlled by redox signals from photosynthesis. The kinetics of these signals and the adjustments of energetic and metabolic demands to the changes in the photosynthetic apparatus are currently poorly understood. Using a redox signaling system that preferentially excites either photosystem I or II, we measured the time-dependent impact of redox signals on the transcriptome and metabolome of Arabidopsis thaliana. We observed rapid and dynamic changes in nuclear transcript accumulation resulting in differential and specific expression patterns for genes associated with photosynthesis and metabolism. Metabolite pools also exhibited dynamic changes and indicate readjustments between distinct metabolic states depending on the respective illumination. These states reflect reallocation of energy resources in a defined and reversible manner, indicating that structural changes in the photosynthetic apparatus during long-term acclimation are additionally supported at the level of metabolism. We propose that photosynthesis can act as an environmental sensor, producing retrograde redox signals that trigger two parallel adjustment loops that coordinate photosynthesis and metabolism to adapt plant primary productivity to the environment.

Research paper thumbnail of Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase: A Novel Regulatory Mechanism Linking Starch Synthesis to the Sucrose Supply

THE PLANT CELL ONLINE, 2002

Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major rol... more Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major role in the regulation of starch synthesis. Analysis of the response after detachment of growing potato tubers from the mother plant revealed that this concept requires extension. Starch synthesis was inhibited within 24 h of tuber detachment, even though the catalytic subunit of AGPase (AGPB) and overall AGPase activity remained high, the substrates ATP and Glc-1-P increased, and the glycerate-3-phosphate/inorganic orthophosphate (the allosteric activator and inhibitor, respectively) ratio increased. This inhibition was abolished in transformants in which a bacterial AGPase replaced the potato AGPase.

Research paper thumbnail of Impaired Photoassimilate Partitioning Caused by Phloem-Specific Removal of Pyrophosphate Can Be Complemented by a Phloem-Specific Cytosolic Yeast-Derived Invertase in Transgenic Plants

THE PLANT CELL ONLINE, 1995

Constitutive expression of the Escherlchia coli ppa gene encoding inorganic pyrophosphatase resul... more Constitutive expression of the Escherlchia coli ppa gene encoding inorganic pyrophosphatase resulted in sugar accumulation in source leaves and stunted growth of transgenic tobacco plants. The reason for this phenotype was hypothesized to be reduced sucrose utilization and loading into the phloem. To study the role of PPi in phloem cells, a chimeric gene was constructed using the phloem-specific rolC promoter of Agrobacterium rhizogenes to drive the expression of the ppa gene. Removal of cytosolic PPi in those cells resulted in photoassimilate accumulation in source leaves, chlorophyll loss, and reduced plant growth. From these data, it was postulated that sucrose hydrolysis via sucmse synthase is essentiai for assimilate partitioning. To bypass the PPi-dependent sucrose synthase step, transgenic plants were produced that express various levels of the yeast suc2 gene, which encodes cytosolic invertase, in their phloem cells. To combine the phloem-specific expression of the ppa gene and the suc2 gene, cmsses between invertase-and pyrophosphatasecontaining transgenic plants were performed. Analysis of their offspring revealed that invertase can complement the phenotypic effects caused by the removal of PPi in phloem cells.

Research paper thumbnail of A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment

PROTEOMICS, 2008

The dynamics of a proteome can only be addressed with large-scale, high-throughput methods. To co... more The dynamics of a proteome can only be addressed with large-scale, high-throughput methods. To cope with the inherent complexity, techniques based on targeted quantification using proteotypic peptides are arising. This is an essential systems biology approach; however, for the exploratory discovery of unexpected markers, nontargeted detection of proteins, and protein modifications is indispensable. We present a rapid label-free shotgun proteomics approach that extracts relevant phenotype-specific peptide product ion spectra in an automated workflow without prior identification. These product ion spectra are subsequently sequenced with database search and de novo prediction algorithms. We analyzed six potato tuber cultivars grown on three plots of two geographically separated fields in Germany. For data mining about 1.5 million spectra from 107 analyses were aligned and statistically examined in approximately 1 day. Several cultivar-specific protein markers were detected. Based on de novo-sequencing a dominant protein polymorphism not detectable in the available EST-databases was assigned exclusively to a specific potato cultivar. The approach is applicable to organisms with unsequenced or incomplete genomes and to the automated extraction of relevant mass spectra that potentially cannot be identified by genome/EST-based search algorithms.

Research paper thumbnail of Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase

Proceedings of the National Academy of Sciences, 2005

Trehalose is the most widespread disaccharide in nature, occurring in bacteria, fungi, insects, a... more Trehalose is the most widespread disaccharide in nature, occurring in bacteria, fungi, insects, and plants. Its precursor, trehalose 6-phosphate (T6P), is also indispensable for the regulation of sugar utilization and growth, but the sites of action are largely unresolved. Here we use genetic and biochemical approaches to investigate whether T6P acts to regulate starch synthesis in plastids of higher plants. Feeding of trehalose to Arabidopsis leaves led to stimulation of starch synthesis within 30 min, accompanied by activation of ADP-glucose pyrophosphorylase (AGPase) via posttranslational redox modification. The response resembled sucrose but not glucose feeding and depended on the expression of SNF1-related kinase. We also analyzed transgenic Arabidopsis plants with T6P levels increased by expression of T6P synthase or decreased by expression of T6P phosphatase (TPP) in the cytosol. Compared with wild type, leaves of T6P synthase-expressing plants had increased redox activation of AGPase and increased starch, whereas TPP-expressing plants showed the opposite. Moreover, TPP expression prevented the increase in AGPase activation in response to sucrose or trehalose feeding. Incubation of intact isolated chloroplasts with 100 muM T6P significantly and specifically increased reductive activation of AGPase within 15 min. Results provide evidence that T6P is synthesized in the cytosol and acts on plastidial metabolism by promoting thioredoxin-mediated redox transfer to AGPase in response to cytosolic sugar levels, thereby allowing starch synthesis to be regulated independently of light. The discovery informs about the evolution of plant metabolism and how chloroplasts of prokaryotic origin use an intermediate of the ancient trehalose pathway to report the metabolic status of the cytosol.

Research paper thumbnail of Combined Metabolomic and Genetic Approaches Reveal a Link between the Polyamine Pathway and Albumin 2

Several legume seed proteins that are potentially allergenic, poorly digested by farm animals, an... more Several legume seed proteins that are potentially allergenic, poorly digested by farm animals, and/or have undesirable func- tional properties, have been described. One of these is the albumin protein in pea (Pisum sativum) called PA2. A naturally occurring mutant line that lacks PA2 has been exploited in studies to determine the biological function of this nonstorage protein in seed development.

Research paper thumbnail of Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach

Plant Biotechnology Journal, 2010

Biomarkers are used to predict phenotypical properties before these features become apparent and,... more Biomarkers are used to predict phenotypical properties before these features become apparent and, therefore, are valuable tools for both fundamental and applied research. Diagnostic biomarkers have been discovered in medicine many decades ago and are now commonly applied. While this is routine in the field of medicine, it is of surprise that in agriculture this approach has never been investigated. Up to now, the prediction of phenotypes in plants was based on growing plants and assaying the organs of interest in a time intensive process. For the first time, we demonstrate in this study the application of metabolomics to predict agronomic important phenotypes of a crop plant that was grown in different environments.

Research paper thumbnail of Combined Transcript and Metabolite Profiling of Arabidopsis Leaves Reveals Fundamental Effects of the Thiol-Disulfide Status on Plant Metabolism1(W)(OA)

In this study, we used gas chromatography-mass spectrometry analysis in combination with flux ana... more In this study, we used gas chromatography-mass spectrometry analysis in combination with flux analysis and the Affymetrix ATH1 GeneChip to survey the metabolome and transcriptome of Arabidopsis (Arabidopsis thaliana) leaves in response to manipulation of the thiol-disulfide status. Feeding low concentrations of the sulfhydryl reagent dithiothreitol for 1 h at the end of the dark period led to posttranslational redox

Research paper thumbnail of Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ADP transporter

Planta, 2003

Recently, it has been reported that tubers of transgenic potato ( Solanum tuberosum L.) plants wi... more Recently, it has been reported that tubers of transgenic potato ( Solanum tuberosum L.) plants with decreased activity of the plastidic ATP/ADP transporter (AATP1) contain less starch, despite having an increased glucose level [P. Geigenberger et al. (2001) Plant Physiol 125:1667-1678]. The metabolic alterations correlated with enhanced resistance to the bacterium Erwinia carotovora. Here it is shown that transgenic potato tubers, possessing less starch yet increased glucose levels due to the expression of a cytoplasm-localized yeast invertase, exhibit drastic susceptibility to E. carotovora. In addition, it is demonstrated that AATP1 anti-sense tubers show an increased capacity to ward off the pathogenic fungus Alternaria solani. In contrast to AATP1 anti-sense tubers, the corresponding leaf tissue does not show changes in carbohydrate accumulation. However, upon elicitor treatment, AATP1 anti-sense leaves possess an increased capacity to release H(2)O(2) and activate various defen...

Research paper thumbnail of Redox regulation of carbon storage and partitioning in response to light and sugars

Journal of Experimental Botany, 2005

Redox signals generated by the photosynthetic elec- tron transport chain are known to be involved... more Redox signals generated by the photosynthetic elec- tron transport chain are known to be involved in regulating the Calvin cycle, ATP synthesis, and NADPH export from chloroplasts in response to light. The signal cascade involves transfer of electrons from photosystem I via the ferredoxin-thioredoxin system to target enzymes that are activated by reduction of regulatory disulphide bonds. The purpose of

Research paper thumbnail of Use of Non-aqueous Fractionation and Metabolomics to Study Chloroplast Function in Arabidopsis

Methods Mol Biol, 2011

Chloroplasts are the chemical factories of plant cells because they are able to fix inorganic car... more Chloroplasts are the chemical factories of plant cells because they are able to fix inorganic carbon and -convert it to a wide-range of photoassimilates that are exported to the cytosol and other sub-cellular compartments. If the regulation of these processes is to be understood, the in vivo concentrations of a large number of metabolites have to be measured in all of these compartments separately. Sophisticated analytical approaches and continued advances in the technology of mass spectrometry coupled to a variety of fractionation and separation techniques allow the reliable analysis of a comprehensive complement of metabolites in photosynthetic tissues. Metabolomic approaches allow the multi-parallel analysis of a wide-range of metabolic intermediates and have been used for rapid phenotyping of different genotypes and environmental effects in plants. In addition to this, methods have been developed to analyse metabolite levels in different sub-cellular compartments of plant cells. Here, we describe methods for sub-cellular fractionation of Arabidopsis leaves using a non-aqueous density gradient technique, sample preparation suitable for metabolite profiling using gas-chromatography-mass spectrometry, and calculation of sub-cellular metabolite concentrations.

Research paper thumbnail of Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants

† Background and Aims Oxygen can fall to low concentrations within plant tissues, either because ... more † Background and Aims Oxygen can fall to low concentrations within plant tissues, either because of environmental factors that decrease the external oxygen concentration or because the movement of oxygen through the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants can decrease their oxygen consumption in response to relatively small changes in oxygen concentrations to avoid internal anoxia. The molecular mechanisms underlying this response have not been identified yet. The aim of this study was to use transcript and metabolite profiling to investigate the genomic response of arabidopsis roots to a mild decrease in oxygen concentrations. † Methods Arabidopsis seedlings were grown on vertical agar plates at 21, 8, 4 and 1 % (v/v) external oxygen for 0 . 5, 2 and 48 h. Roots were analysed for changes in transcript levels using Affymetrix whole genome DNA microarrays, and for changes in metabolite levels using routine GC-MS based metabolite profiling. Root extension rates were monitored in parallel to investigate adaptive changes in growth. † Key Results The results show that root growth was inhibited and transcript and metabolite profiles were significantly altered in response to a moderate decrease in oxygen concentrations. Low oxygen leads to a preferential up-regulation of genes that might be important to trigger adaptive responses in the plant. A small but highly specific set of genes is induced very early in response to a moderate decrease in oxygen concentrations. Genes that were down-regulated mainly encoded proteins involved in energy-consuming processes. In line with this, root extension growth was significantly decreased which will ultimately save ATP and decrease oxygen consumption. This was accompanied by a differential regulation of metabolite levels at short-and long-term incubation at low oxygen. † Conclusions The results show that there are adaptive changes in root extension involving large-scale reprogramming of gene expression and metabolism when oxygen concentration is decreased in a very narrow range.

Research paper thumbnail of Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers

The Plant Journal, 1999

Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Anti... more Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Antisense and cosuppression potato transformants with decreased expression of sucrose±phosphate synthase (SPS) have been used to analyse the importance of SPS for the regulation of this water-stress induced change in partitioning. (i) In the absence of water stress, a 70±80% decrease in SPS activity led to a 30±50% inhibition of sucrose synthesis and a slight (10±20%) increase of starch synthesis in tuber discs in short-term labelling experiments with low concentrations of labelled glucose. Similar changes were seen in short-term labelling experiments with intact tubers attached to well-watered plants. Provided plants were grown with ample light and water, transformant tubers had a slightly lower water and sucrose content and a similar or even marginally higher starch content than wild-type tubers. (ii) When wild-type tuber slices were incubated with labelled glucose in the presence of mannitol to generate a moderate water de®cit (between ±0.12 and ±0.72 MPa), there was a marked stimulation of sucrose synthesis and inhibition of starch synthesis. A similar stimulation was seen in labelling experiments with wild-type tubers that were attached to waterstressed wild-type plants. These changes were almost completely suppressed in transformants with a 70±80% reduction of SPS activity. (iii) Decreased irrigation led to an increase in the fraction of the dry-matter allocated to tubers in wild-type plants. This shift in allocation was prevented in transformants with reduced expression of SPS. (iv) The results show that operation of SPS and the sucrose cycle in growing potato tubers may lead to a marginal decrease in starch accumulation in non-stressed plants. However, SPS becomes a crucial factor in water-stressed plants because it is required for adaptive changes in tuber metabolism and whole plant allocation.

Research paper thumbnail of Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus

The Plant Journal, 2002

Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. ... more Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. and from two starch-deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (<10 kDa; SHG S ) and high (>10 kDa; SHG L ) molecular weight compounds. SHG S was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHG L was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non-aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHG S exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1-phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHG S and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2-glycan interaction. As revealed by in vivo labeling experiments using 14 CO 2 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light-dark regime.

Research paper thumbnail of HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana

The Plant Journal, 2010

Plants often experience challenging hypoxic conditions imposed by soil waterlogging or complete f... more Plants often experience challenging hypoxic conditions imposed by soil waterlogging or complete flooding. In rice, Sub1A, a flooding-induced ethylene responsive factor (ERF) plays a crucial role in submergence tolerance. In this study, we examined two Arabidopsis Hypoxia Responsive ERF genes (HRE1 and HRE2), belonging to the same ERF group as Sub1A. Transgenic Arabidopsis plants, which over-expressed HRE1, showed an improved tolerance of anoxia, whereas a double-knockout mutant hre1hre2 was more susceptible than the wild type. HRE1 over-expressing plants showed an increased activity in the fermentative enzymes pyruvate decarboxylase and alcohol dehydrogenase together with increased ethanol production under hypoxia, but not in normoxia. Whole-genome microarray analyses suggested that an over-expression of HRE1, but not HRE2, increased the induction of most anaerobic genes under hypoxia. Real-time quantitative (q)PCR analyses confirmed a positive effect of HRE1 over-expression on several anaerobic genes, whereas the double-knockout mutant hre1hre2 showed a decreased expression in the same genes after 4 h of hypoxia. Single-knockout mutants did not show significant differences from the wild type. We found that the regulation of HRE1 and HRE2 by low oxygen relies on different mechanisms, since HRE1 requires protein synthesis to be induced while HRE2 does not. HRE2 is likely to be regulated post-transcriptionally by mRNA stabilization. We propose that HRE1 and HRE2 play a partially redundant role in low oxygen signalling in Arabidopsis thaliana, thus improving the tolerance of the plant to the stress by enhancing anaerobic gene expression and ethanolic fermentation.

Research paper thumbnail of Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase

The Plant Journal, 2000

Sucrose export from leaves is high during the day and lower at night, when it depends on starch r... more Sucrose export from leaves is high during the day and lower at night, when it depends on starch remobilisation. We have investigated the consequences of diurnal changes of photoassimilate supply for starch synthesis and other metabolic processes in growing potato tubers. Sucrose, the levels of the transcripts for SUS and AGPS, the levels of key metabolites, and the rate of synthesis of starch and other major end products, including protein and cell wall polysaccharides, increased twofold or more between the start and end of the light period. The stimulation of starch synthesis was accompanied by an increase of UDPglucose and ADPglucose, whereas glycolytic intermediates remained unaltered, revealing that sucrose synthase and ADP-glucose pyrophosphorylase are being co-ordinately regulated. Sucrose synthase is stimulated via an increase of its substrates, UDP and sucrose. UDP increases due to an increase of the overall uridine nucleotide pool, and a decrease of the UTP/UDP ratio that occurs in parallel with a decrease of the ATP/ADP ratio and adenylate energy charge when biosynthetic¯uxes are high at the end of the day. Within the time frame of the diurnal changes, the changes in the SUS and AGPS transcript levels do not lead to signi®cant changes in the encoded enzymes. Transformants with a progressive decrease of sucrose phosphate synthase expression, where diurnal changes in leaf sugar levels were damped, exhibited a progressive attenuation of the diurnal changes of sucrose, nucleotide sugars and nucleotides, and¯uxes in their tubers. It is concluded that metabolic processes in tubers are tightly linked to the momentary supply of sucrose.

Research paper thumbnail of Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis

The Plant Journal, 1998

The original aim of this work was to increase starch accumulation in potato tubers by enhancing t... more The original aim of this work was to increase starch accumulation in potato tubers by enhancing their capacity to metabolise sucrose. We previously reported that specific expression of a yeast invertase in the cytosol of tubers led to a 95% reduction in sucrose content, but that this was accompanied by a larger accumulation of glucose and a reduction in starch. In the present paper we introduced a bacterial glucokinase from Zymomonas mobilis into an invertase-expressing transgenic line, with the intention of bringing the glucose into metabolism. Transgenic lines were obtained with up to threefold more glucokinase activity than in the parent invertase line and which did not accumulate glucose. Unexpectedly, there was a further dramatic reduction in starch content, down to 35% of wild-type levels. Biochemical analysis of growing tuber tissue revealed large increases in the metabolic intermediates of glycolysis, organic acids and amino acids, two-to threefold increases in the maximum catalytic activities of key enzymes in the respiratory pathways, and three-to fivefold increases in carbon dioxide production. These changes occur in the lines expressing invertase, and are accentuated following introduction of the second transgene, glucokinase. We conclude that the expression of invertase in potato tubers leads to an increased flux through the glycolytic pathway at the expense of starch synthesis and that heterologous overexpression of glucokinase enhances this change in partitioning.

Research paper thumbnail of Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers

The Plant Journal, 2003

We recently discovered that post-translational redox modulation of ADP-glucose pyrophosphorylase ... more We recently discovered that post-translational redox modulation of ADP-glucose pyrophosphorylase (AGPase) is a powerful new mechanism to adjust the rate of starch synthesis to the availability of sucrose in growing potato tubers. A strong correlation was observed between the endogenous levels of sucrose and the redox-activation state of AGPase. To identify candidate components linking AGPase redox modulation to sugar supply, we used potato tuber discs as a model system. When the discs were cut from growing wild-type potato tubers and incubated for 2 h in the absence of sugars, redox activation of AGPase decreased because of a decrease in internal sugar levels. The decrease in AGPase redox activation could be prevented when glucose or sucrose was supplied to the discs. Both sucrose uptake and redox activation of AGPase were increased when EDTA was used to prepare the tuber discs. However, EDTA treatment of discs had no effect on glucose uptake. Feeding of different glucose analogues revealed that the phosphorylation of hexoses by hexokinase is an essential component in the glucose-dependent redox activation of AGPase. In contrast to this, feeding of the non-metabolisable sucrose analogue, palatinose, leads to a similar activation as with sucrose, indicating that metabolism of sucrose is not necessary in the sucrose-dependent AGPase activation. The in¯uence of sucrose and glucose on redox activation of AGPase was also investigated in discs cut from tubers of antisense plants with reduced SNF1-related protein kinase activity (SnRK1). Feeding of sucrose to tuber discs prevented AGPase redox inactivation in the wild type but not in SnRK1 antisense lines. However, feeding of glucose leads to a similar activation of AGPase in the wild type and in SnRK1 transformants. AGPase redox activation was also increased in transgenic tubers with ectopic overexpression of invertase, containing high levels of glucose and low sucrose levels. Expression of a bacterial glucokinase in the invertase-expressing background led to a decrease in AGPase activation state and tuber starch content. These results show that both sucrose and glucose lead to post-translational redox activation of AGPase, and that they do this by two different pathways involving SnRK1 and an endogenous hexokinase, respectively.

Research paper thumbnail of Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system

The Plant Journal, 2002

Metabolite assays are required to characterise how metabolism changes between genotypes during de... more Metabolite assays are required to characterise how metabolism changes between genotypes during development and in response to environmental perturbations. They provide a springboard to identify important regulatory sites and investigate the underlying mechanisms. Due to their small size, Arabidopsis seeds pose a technical challenge for such measurements. A set of assays based on a novel enzymic cycling system between glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate oxidase have been developed and optimised for use with growing Arabidopsis seeds. In combination with existing assays they provide a suite of high throughput, sensitive assays for the immediate precursors for starch (adenine diphosphate glucose) and lipid (acetyl coenzyme A, glycerol-3-phosphate) synthesis, as well as pyrophosphate, ATP, ADP and most of the glycolytic intermediates. A method is also presented to rapidly quench intact siliques, lyophilise them and then manually separate seeds for metabolite analysis. These techniques are used to investigate changes in overall seed metabolite levels during development and maturation, and in response to a stepwise decrease of the external oxygen concentration.

Research paper thumbnail of Inhibition of de Novo Pyrimidine Synthesis in Growing Potato Tubers Leads to a Compensatory Stimulation of the Pyrimidine Salvage Pathway and a Subsequent Increase in Biosynthetic Performance

THE PLANT CELL ONLINE, 2005

Pyrimidine nucleotides are of general importance for many aspects of cell function, but their rol... more Pyrimidine nucleotides are of general importance for many aspects of cell function, but their role in the regulation of biosynthetic processes is still unclear. In this study, we investigate the influence of a decreased expression of UMP synthase (UMPS), a key enzyme in the pathway of de novo pyrimidine synthesis, on biosynthetic processes in growing potato (Solanum tuberosum) tubers. Transgenic plants were generated expressing UMPS in the antisense orientation under the control of the tuber-specific patatin promoter. Lines were selected with markedly decreased expression of UMPS in the tubers. Decreased expression of UMPS restricted the use of externally supplied orotate for de novo pyrimidine synthesis in tuber tissue, whereas the uridine-salvaging pathway was stimulated. This shift in the pathways of UMP synthesis was accompanied by increased levels of tuber uridine nucleotides, increased fluxes of [ 14 C]sucrose to starch and cell wall synthesis, and increased amounts of starch and cell wall components in the tubers, whereas there were no changes in uridine nucleotide levels in leaves. Decreased expression of UMPS in tubers led to an increase in transcript levels of carbamoylphosphate synthase, uridine kinase, and uracil phosphoribosyltransferase, the latter two encoding enzymes in the pyrimidine salvage pathways. Thus, the results show that antisense inhibition of the de novo pathway of pyrimidine synthesis leads to a compensatory stimulation of the less energyconsuming salvage pathways, probably via increased expression and activity of uridine kinase and uracil phosphoribosyltransferase. This results in increased uridine nucleotide pool levels in tubers and improved biosynthetic performance.

Research paper thumbnail of Dynamic Plastid Redox Signals Integrate Gene Expression and Metabolism to Induce Distinct Metabolic States in Photosynthetic Acclimation in Arabidopsis

THE PLANT CELL ONLINE, 2009

Plants possess acclimation responses in which structural reconfigurations adapt the photosyntheti... more Plants possess acclimation responses in which structural reconfigurations adapt the photosynthetic apparatus to fluctuating illumination. Long-term acclimation involves changes in plastid and nuclear gene expression and is controlled by redox signals from photosynthesis. The kinetics of these signals and the adjustments of energetic and metabolic demands to the changes in the photosynthetic apparatus are currently poorly understood. Using a redox signaling system that preferentially excites either photosystem I or II, we measured the time-dependent impact of redox signals on the transcriptome and metabolome of Arabidopsis thaliana. We observed rapid and dynamic changes in nuclear transcript accumulation resulting in differential and specific expression patterns for genes associated with photosynthesis and metabolism. Metabolite pools also exhibited dynamic changes and indicate readjustments between distinct metabolic states depending on the respective illumination. These states reflect reallocation of energy resources in a defined and reversible manner, indicating that structural changes in the photosynthetic apparatus during long-term acclimation are additionally supported at the level of metabolism. We propose that photosynthesis can act as an environmental sensor, producing retrograde redox signals that trigger two parallel adjustment loops that coordinate photosynthesis and metabolism to adapt plant primary productivity to the environment.

Research paper thumbnail of Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase: A Novel Regulatory Mechanism Linking Starch Synthesis to the Sucrose Supply

THE PLANT CELL ONLINE, 2002

Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major rol... more Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major role in the regulation of starch synthesis. Analysis of the response after detachment of growing potato tubers from the mother plant revealed that this concept requires extension. Starch synthesis was inhibited within 24 h of tuber detachment, even though the catalytic subunit of AGPase (AGPB) and overall AGPase activity remained high, the substrates ATP and Glc-1-P increased, and the glycerate-3-phosphate/inorganic orthophosphate (the allosteric activator and inhibitor, respectively) ratio increased. This inhibition was abolished in transformants in which a bacterial AGPase replaced the potato AGPase.

Research paper thumbnail of Impaired Photoassimilate Partitioning Caused by Phloem-Specific Removal of Pyrophosphate Can Be Complemented by a Phloem-Specific Cytosolic Yeast-Derived Invertase in Transgenic Plants

THE PLANT CELL ONLINE, 1995

Constitutive expression of the Escherlchia coli ppa gene encoding inorganic pyrophosphatase resul... more Constitutive expression of the Escherlchia coli ppa gene encoding inorganic pyrophosphatase resulted in sugar accumulation in source leaves and stunted growth of transgenic tobacco plants. The reason for this phenotype was hypothesized to be reduced sucrose utilization and loading into the phloem. To study the role of PPi in phloem cells, a chimeric gene was constructed using the phloem-specific rolC promoter of Agrobacterium rhizogenes to drive the expression of the ppa gene. Removal of cytosolic PPi in those cells resulted in photoassimilate accumulation in source leaves, chlorophyll loss, and reduced plant growth. From these data, it was postulated that sucrose hydrolysis via sucmse synthase is essentiai for assimilate partitioning. To bypass the PPi-dependent sucrose synthase step, transgenic plants were produced that express various levels of the yeast suc2 gene, which encodes cytosolic invertase, in their phloem cells. To combine the phloem-specific expression of the ppa gene and the suc2 gene, cmsses between invertase-and pyrophosphatasecontaining transgenic plants were performed. Analysis of their offspring revealed that invertase can complement the phenotypic effects caused by the removal of PPi in phloem cells.

Research paper thumbnail of A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment

PROTEOMICS, 2008

The dynamics of a proteome can only be addressed with large-scale, high-throughput methods. To co... more The dynamics of a proteome can only be addressed with large-scale, high-throughput methods. To cope with the inherent complexity, techniques based on targeted quantification using proteotypic peptides are arising. This is an essential systems biology approach; however, for the exploratory discovery of unexpected markers, nontargeted detection of proteins, and protein modifications is indispensable. We present a rapid label-free shotgun proteomics approach that extracts relevant phenotype-specific peptide product ion spectra in an automated workflow without prior identification. These product ion spectra are subsequently sequenced with database search and de novo prediction algorithms. We analyzed six potato tuber cultivars grown on three plots of two geographically separated fields in Germany. For data mining about 1.5 million spectra from 107 analyses were aligned and statistically examined in approximately 1 day. Several cultivar-specific protein markers were detected. Based on de novo-sequencing a dominant protein polymorphism not detectable in the available EST-databases was assigned exclusively to a specific potato cultivar. The approach is applicable to organisms with unsequenced or incomplete genomes and to the automated extraction of relevant mass spectra that potentially cannot be identified by genome/EST-based search algorithms.

Research paper thumbnail of Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase

Proceedings of the National Academy of Sciences, 2005

Trehalose is the most widespread disaccharide in nature, occurring in bacteria, fungi, insects, a... more Trehalose is the most widespread disaccharide in nature, occurring in bacteria, fungi, insects, and plants. Its precursor, trehalose 6-phosphate (T6P), is also indispensable for the regulation of sugar utilization and growth, but the sites of action are largely unresolved. Here we use genetic and biochemical approaches to investigate whether T6P acts to regulate starch synthesis in plastids of higher plants. Feeding of trehalose to Arabidopsis leaves led to stimulation of starch synthesis within 30 min, accompanied by activation of ADP-glucose pyrophosphorylase (AGPase) via posttranslational redox modification. The response resembled sucrose but not glucose feeding and depended on the expression of SNF1-related kinase. We also analyzed transgenic Arabidopsis plants with T6P levels increased by expression of T6P synthase or decreased by expression of T6P phosphatase (TPP) in the cytosol. Compared with wild type, leaves of T6P synthase-expressing plants had increased redox activation of AGPase and increased starch, whereas TPP-expressing plants showed the opposite. Moreover, TPP expression prevented the increase in AGPase activation in response to sucrose or trehalose feeding. Incubation of intact isolated chloroplasts with 100 muM T6P significantly and specifically increased reductive activation of AGPase within 15 min. Results provide evidence that T6P is synthesized in the cytosol and acts on plastidial metabolism by promoting thioredoxin-mediated redox transfer to AGPase in response to cytosolic sugar levels, thereby allowing starch synthesis to be regulated independently of light. The discovery informs about the evolution of plant metabolism and how chloroplasts of prokaryotic origin use an intermediate of the ancient trehalose pathway to report the metabolic status of the cytosol.