Pham Tuong Van - Academia.edu (original) (raw)
Uploads
Papers by Pham Tuong Van
Huyø nh Caù t Töôø ng Khaù nh kieä t taø i chính vaø öù ng duï ng moâ hình Z-Score trong döï baù ... more Huyø nh Caù t Töôø ng Khaù nh kieä t taø i chính vaø öù ng duï ng moâ hình Z-Score trong döï baù o khaù nh kieä t taø i chính CHUYEÂ N NGAØ NH: KINH TEÁ TAØ I CHÍNH -NGAÂ N HAØ NG MAÕ SOÁ : 60.31.12 LUAÄ N VAÊ N THAÏ C SÓ KINH TEÁ Ngöôø i höôù ng daã n khoa hoï c: PHOÙ GIAÙ O SÖ -TIEÁ N SYÕ PHAN THÒ BÍCH NGUYEÄ T THAØ NH PHOÁ HOÀ CHÍ MINH -NAÊ M 2008 0
The main purpose of this paper is the development and validation of a failure classification mode... more The main purpose of this paper is the development and validation of a failure classification model for UK public industrial companies using current techniques: logit analysis and Neural Networks. Our dataset consists of 51 matched-pairs of failed and nonfailed UK public industrial firms over the period 1988-1997. Prediction models are developed for up to three years prior to the failure event. The models are validated using an out of sample period ex-ante test and the Lachenbruch technique.
Huyø nh Caù t Töôø ng Khaù nh kieä t taø i chính vaø öù ng duï ng moâ hình Z-Score trong döï baù ... more Huyø nh Caù t Töôø ng Khaù nh kieä t taø i chính vaø öù ng duï ng moâ hình Z-Score trong döï baù o khaù nh kieä t taø i chính CHUYEÂ N NGAØ NH: KINH TEÁ TAØ I CHÍNH -NGAÂ N HAØ NG MAÕ SOÁ : 60.31.12 LUAÄ N VAÊ N THAÏ C SÓ KINH TEÁ Ngöôø i höôù ng daã n khoa hoï c: PHOÙ GIAÙ O SÖ -TIEÁ N SYÕ PHAN THÒ BÍCH NGUYEÄ T THAØ NH PHOÁ HOÀ CHÍ MINH -NAÊ M 2008 0
The main purpose of this paper is the development and validation of a failure classification mode... more The main purpose of this paper is the development and validation of a failure classification model for UK public industrial companies using current techniques: logit analysis and Neural Networks. Our dataset consists of 51 matched-pairs of failed and nonfailed UK public industrial firms over the period 1988-1997. Prediction models are developed for up to three years prior to the failure event. The models are validated using an out of sample period ex-ante test and the Lachenbruch technique.