Pravendra Singh - Academia.edu (original) (raw)
Uploads
Papers by Pravendra Singh
arXiv (Cornell University), Dec 23, 2021
A class-incremental learning problem is characterized by training data becoming available in a ph... more A class-incremental learning problem is characterized by training data becoming available in a phase-by-phase manner. Deep learning models suffer from catastrophic forgetting of the classes in the older phases as they get trained on the classes introduced in the new phase. In this work, we show that the effect of catastrophic forgetting on the model prediction varies with the change in orientation of the same image, which is a novel finding. Based on this, we propose a novel data-ensemble approach that combines the predictions for the different orientations of the image to help the model retain further information regarding the previously seen classes and thereby reduce the effect of forgetting on the model predictions. However, we cannot directly use the data-ensemble approach if the model is trained using traditional techniques. Therefore, we also propose a novel dual-incremental learning framework that involves jointly training the network with two incremental learning objectives, i.e., the class-incremental learning objective and our proposed data-incremental learning objective. In the dualincremental learning framework, each image belongs to two classes, i.e., the image class (for class-incremental learning) and the orientation class (for data-incremental learning). In class-incremental learning, each new phase introduces a new set of classes, and the model cannot access the complete training data from the older phases. In our proposed data-incremental learning, the orientation classes remain the same across all the phases, and the data introduced by the new phase in class-incremental learning acts as new training data for these orientation classes. We empirically demonstrate that the dual-incremental learning framework is vital to the data-ensemble approach. We apply our proposed approach to state-of-the-art class-incremental learning methods and empirically show that our framework significantly improves the performance of these methods. Our proposed method significantly improves the performance of the stateof-the-art method (AANets) on the CIFAR-100 dataset by absolute margins of 3.30%, 4.28%, 3.55%, 4.03%, for the number of phases P=50, 25, 10, and 5, respectively, which establishes the efficacy of the proposed work.
Multimedia Tools and Applications, 2022
The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerpri... more The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SEblock introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021
Deep learning models suffer from catastrophic forgetting when trained in an incremental learning ... more Deep learning models suffer from catastrophic forgetting when trained in an incremental learning setting. In this work, we propose a novel approach to address the task incremental learning problem, which involves training a model on new tasks that arrive in an incremental manner. The task incremental learning problem becomes even more challenging when the test set contains classes that are not part of the train set, i.e., a task incremental generalized zero-shot learning problem. Our approach can be used in both the zero-shot and non zero-shot task incremental learning settings. Our proposed method uses weight rectifications and affine transformations in order to adapt the model to different tasks that arrive sequentially. Specifically, we adapt the network weights to work for new tasks by "rectifying" the weights learned from the previous task. We learn these weight rectifications using very few parameters. We additionally learn affine transformations on the outputs generated by the network in order to better adapt them for the new task. We perform experiments on several datasets in both zero-shot and non zero-shot task incremental learning settings and empirically show that our approach achieves state-of-the-art results. Specifically, our approach outperforms the state-of-the-art non zero-shot task incremental learning method by over 5% on the CIFAR-100 dataset. Our approach also significantly outperforms the state-of-the-art task incremental generalized zero-shot learning method by absolute margins of 6.91% and 6.33% for the AWA1 and CUB datasets, respectively. We validate our approach using various ablation studies.
arXiv (Cornell University), Dec 23, 2021
A class-incremental learning problem is characterized by training data becoming available in a ph... more A class-incremental learning problem is characterized by training data becoming available in a phase-by-phase manner. Deep learning models suffer from catastrophic forgetting of the classes in the older phases as they get trained on the classes introduced in the new phase. In this work, we show that the effect of catastrophic forgetting on the model prediction varies with the change in orientation of the same image, which is a novel finding. Based on this, we propose a novel data-ensemble approach that combines the predictions for the different orientations of the image to help the model retain further information regarding the previously seen classes and thereby reduce the effect of forgetting on the model predictions. However, we cannot directly use the data-ensemble approach if the model is trained using traditional techniques. Therefore, we also propose a novel dual-incremental learning framework that involves jointly training the network with two incremental learning objectives, i.e., the class-incremental learning objective and our proposed data-incremental learning objective. In the dualincremental learning framework, each image belongs to two classes, i.e., the image class (for class-incremental learning) and the orientation class (for data-incremental learning). In class-incremental learning, each new phase introduces a new set of classes, and the model cannot access the complete training data from the older phases. In our proposed data-incremental learning, the orientation classes remain the same across all the phases, and the data introduced by the new phase in class-incremental learning acts as new training data for these orientation classes. We empirically demonstrate that the dual-incremental learning framework is vital to the data-ensemble approach. We apply our proposed approach to state-of-the-art class-incremental learning methods and empirically show that our framework significantly improves the performance of these methods. Our proposed method significantly improves the performance of the stateof-the-art method (AANets) on the CIFAR-100 dataset by absolute margins of 3.30%, 4.28%, 3.55%, 4.03%, for the number of phases P=50, 25, 10, and 5, respectively, which establishes the efficacy of the proposed work.
Multimedia Tools and Applications, 2022
The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerpri... more The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SEblock introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021
Deep learning models suffer from catastrophic forgetting when trained in an incremental learning ... more Deep learning models suffer from catastrophic forgetting when trained in an incremental learning setting. In this work, we propose a novel approach to address the task incremental learning problem, which involves training a model on new tasks that arrive in an incremental manner. The task incremental learning problem becomes even more challenging when the test set contains classes that are not part of the train set, i.e., a task incremental generalized zero-shot learning problem. Our approach can be used in both the zero-shot and non zero-shot task incremental learning settings. Our proposed method uses weight rectifications and affine transformations in order to adapt the model to different tasks that arrive sequentially. Specifically, we adapt the network weights to work for new tasks by "rectifying" the weights learned from the previous task. We learn these weight rectifications using very few parameters. We additionally learn affine transformations on the outputs generated by the network in order to better adapt them for the new task. We perform experiments on several datasets in both zero-shot and non zero-shot task incremental learning settings and empirically show that our approach achieves state-of-the-art results. Specifically, our approach outperforms the state-of-the-art non zero-shot task incremental learning method by over 5% on the CIFAR-100 dataset. Our approach also significantly outperforms the state-of-the-art task incremental generalized zero-shot learning method by absolute margins of 6.91% and 6.33% for the AWA1 and CUB datasets, respectively. We validate our approach using various ablation studies.