Prince Agbedanu - Academia.edu (original) (raw)
Papers by Prince Agbedanu
1. Purpose During the COVID 19 Pandemic, the NFL teams have been reported to have limited trainin... more 1. Purpose During the COVID 19 Pandemic, the NFL teams have been reported to have limited training sections in preparation for their games. This study compares the prevalence of injury during the 2018, 2019, and 2020 NFL seasons, with the aim to determine the potential causes of the differences in prevalence. 2. Method Official injury reports from each team were counted during the 17-week regular season of each year (2018, 2019, and 2020). The data was analyzed using an unpaired t-test to compare the injury prevalence between each of the three seasons. 3. Results The 2018 season produced a total of 1,561 injuries and a mean of 48.78 injuries per team. The 2019 season produced a total of 1,897 injuries and mean of 59.28 injuries per team, while the 2020 season produced a total of 2, 484 injuries and mean of 77.63 injuries per team. An unpaired t-test was performed using the data to compare the mean number of injuries per team of each of the seasons. Comparison of the 2020 season agai...
Dirofilaria immitis is the causative agent of heartworm disease in North America. The adult nemat... more Dirofilaria immitis is the causative agent of heartworm disease in North America. The adult nematodes are typically found in the pulmonary arteries leading to respiratory, cardiac and systemic illness. In this report, the authors describe an aberrant migration of adult D immitis associated with fibrinous lesions in the peritoneum of a dog. The nematode was recovered during routine ovariohysterectomy. Examination of the organism revealed that the anterior end of the nematode contained several insignificant cranial papillae and no lips while the caudal region contained two rows of papillae. Histological examination demonstrated coelomyarian musculature and prominent lateral internal cuticular ridges. Subsequent amplification of a region of the 16S rRNA gene confirmed the authors’ diagnosis of D immitis. Diagnosis of nematode parasites often heavily relies on the location of the worm and the identity of the host. This case highlights the use of integrating morphological, histopathologi...
Objective-To evaluate the effect of IV administration of polymyxin B on clinical and serum bioche... more Objective-To evaluate the effect of IV administration of polymyxin B on clinical and serum biochemical variables in foals with experimental endotoxemia. Design-Prospective experimental study. Animals-14 healthy neonatal foals. Procedures-Foals were randomly assigned to a treatment or control group and were administered a single dose of lipopolysaccharide (0.5 μg/kg [0.23 μg/lb]) IV over 30 minutes. The treatment group received polymyxin B (6,000 U/kg [2,727 U/lb], IV) immediately after completion of lipopolysaccharide infusion; the control group was administered an equal volume of saline (0.9% NaCl) solution. Subsequent doses of polymyxin B or saline solution were administered IV at 8 and 16 hours. Blood was collected at various time points, and outcome variables, including heart rate, respiratory rate, rectal temperature, attitude score, WBC count, neutrophil count, lymphocyte count, monocyte count, platelet count, Hct, blood lactate concentration, blood glucose concentration, serum tumor necrosis factor-α concentration, and plasma thromboxane B 2 concentration, were measured. Urine was collected prior to and after experimentation to determine whether nephrotoxicosis was associated with treatment. Results-The treatment group had significantly lower blood lactate concentration and serum tumor necrosis factor-α and plasma thromboxane B 2 concentrations and had higher blood glucose concentrations and better attitude scores, compared with the control group, at various time points during the study. No other significant differences and no evidence of overt nephrotoxicosis were detected. Conclusions and Clinical Relevance-Administration of polymyxin B IV in healthy neonatal foals challenged with lipopolysaccharide attenuated some clinical and serum biochemical derangements associated with endotoxemia.
GPCRs represent the largest known superfamily of membrane proteins extending throughout the Metaz... more GPCRs represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms. We validate and describe an alternative loss-of-function approach for ascertaining the ligand and G protein coupling properties of GPCRs in their native cell membrane environment. Our efforts are focused on the phylum Platyhelminthes, given the heavy health burden exacted by pathogenic flatworms, as well as the role of free-living flatworms as model organisms for the study of developmental biology. RNA interference (RNAi) was used in conjunction with a biochemical endpoint assay to monitor cAMP modulation in response to the translational suppression of individual receptors. As proof of principle, this approach was used to confirm the neuropeptide GYIRFamide as the cognate ligand for the planarian neuropeptide receptor GtNPR-1, while revealing its endogenous coupling to G αi/o. The
Plos Pathogens, Feb 1, 2014
Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The dr... more Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents.
Veterinary parasitology, Jan 15, 2015
Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to ... more Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to conventional treatments. Ivermectin is a very effective anthelmintic used against a variety of parasites but this drug is not consistently effective against alpaca meningeal worms once the parasite has gained access to the CNS, even if used in a protracted treatment protocol. Ivermectin is not effective against clinical cases of P. tenuis, raising the possibility that the drug is not sustained at therapeutic concentrations in the central nervous system (CNS). A specific protein (designated as p-glycoprotein (PGP)) effluxes ivermectin from the brain at the blood-brain barrier, thus hampering the maintenance of therapeutic concentrations of the drug in the CNS. Minocycline is a synthetic tetracycline antibiotic with an excellent safety profile in all animals tested to date. Minocycline has three unique characteristics that could be useful for treating meningeal worms in conjunction with iv...
PLOS Neglected Tropical Diseases, 2015
Lymphatic filariasis (LF) is a socioeconomically devastating mosquito-borne Neglected Tropical Di... more Lymphatic filariasis (LF) is a socioeconomically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30-120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers.
PLOS Neglected Tropical Diseases, 2015
Praziquantel (PZQ) is a key therapy for treatment of parasitic flatworm infections of humans and ... more Praziquantel (PZQ) is a key therapy for treatment of parasitic flatworm infections of humans and livestock, but the mechanism of action of this drug is unresolved. Resolving PZQ-engaged targets and effectors is important for identifying new druggable pathways that may yield novel antiparasitic agents. Here we use functional, genetic and pharmacological approaches to reveal that serotonergic signals antagonize PZQ action in vivo. Exogenous 5-hydroxytryptamine (5-HT) rescued PZQ-evoked polarity and mobility defects in freeliving planarian flatworms. In contrast, knockdown of a prevalently expressed planarian 5-HT receptor potentiated or phenocopied PZQ action in different functional assays. Subsequent screening of serotonergic ligands revealed that several ergot alkaloids possessed broad efficacy at modulating regenerative outcomes and the mobility of both free living and parasitic flatworms. Ergot alkaloids that phenocopied PZQ in regenerative assays to cause bipolar regeneration exhibited structural modifications consistent with serotonergic blockade. These data suggest that serotonergic activation blocks PZQ action in vivo, while serotonergic antagonists phenocopy PZQ action. Importantly these studies identify the ergot alkaloid scaffold as a promising structural framework for designing potent agents targeting parasitic bioaminergic G protein coupled receptors.
In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of... more In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of Salmonella in cattle, we evaluated protozoan G protein-coupled receptors (GPCRs) as transducers of Salmonella engulfment by the model protozoan Tetrahymena. Our laboratory previously demonstrated that non-pathogenic protozoa (including Tetrahymena) engulf Salmonella and then exacerbate its virulence in cattle, but the mechanistic details of the phenomenon are not fully understood. GPCRs were investigated since these receptors facilitate phagocytosis of particulates by Tetrahymena, and a GPCR apparently modulates bacterial engulfment for the pathogenic protozoan Entamoeba histolytica. A database search identified three putative Tetrahymena GPCRs, based on sequence homologies and predicted transmembrane domains, that were the focus of this study. Salmonella engulfment by Tetrahymena was assessed in the presence of suramin, a non-specific GPCR inhibitor. Salmonella engulfment was also assessed in Tetrahymena in which expression of putative GPCRs was knocked-down using RNAi. A candidate GPCR was then expressed in a heterologous yeast expression system for further characterization. Our results revealed that Tetrahymena were less efficient at engulfing Salmonella in the presence of suramin. Engulfment was reduced concordantly with a reduction in the density of protozoa. RNAi-based studies revealed that knock-down of one the Tetrahymena GPCRs caused diminished engulfment of Salmonella. Tetrahymena lysates activated this receptor in the heterologous expression system. These data demonstrate that the Tetrahymena receptor is a putative GPCR that facilitates bacterial engulfment by Tetrahymena. Activation of the putative GPCR seemed to be related to protozoan cell density, suggesting that its cognate ligand is an intercellular signaling molecule.
Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease ... more Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs. MATERIALS AND METHODS Creation of the yeast expression vector encoding EhGPCR-1. DNA encoding EhGPCR-1 (accession number AY880672) was synthesized by GeneScript via codon optimization for yeast expression. The gene was cloned into the pUC57 vector, and the cDNA was amplified with forward
Background: Neglected diseases caused by helminth infections impose a massive hindrance to progre... more Background: Neglected diseases caused by helminth infections impose a massive hindrance to progress in the developing world. While basic research on parasitic flatworms (platyhelminths) continues to expand, researchers have yet to broadly adopt a free-living model to complement the study of these important parasites. Methods: We report the high-coverage sequencing (RNA-Seq) and assembly of the transcriptome of the planarian Girardia tigrina across a set of dynamic conditions. The assembly was annotated and extensive orthology analysis was used to seed a pipeline for the rational prioritization and validation of putative anthelmintic targets. A small number of targets conserved between parasitic and free-living flatworms were comparatively interrogated. Results: 240 million paired-end reads were assembled de novo to produce a strictly filtered predicted proteome consisting of over 22,000 proteins. Gene Ontology annotations were extended to 16,467 proteins. 2,693 sequences were identified in orthology groups spanning flukes, tapeworms and planaria, with 441 highlighted as belonging to druggable protein families. Chemical inhibitors were used on three targets in pharmacological screens using both planaria and schistosomula, revealing distinct motility phenotypes that were shown to correlate with planarian RNAi phenotypes. Conclusions: This work provides the first comprehensive and annotated sequence resource for the model planarian G. tigrina, alongside a prioritized list of candidate drug targets conserved among parasitic and free-living flatworms. As proof of principle, we show that a simple RNAi and pharmacology pipeline in the more convenient planarian model system can inform parasite biology and serve as an efficient screening tool for the identification of lucrative anthelmintic targets.
PLoS ONE, 2012
G protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins ... more G protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many target organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms. We validate and describe an alternative loss-of-function approach for ascertaining the ligand and G protein coupling properties of GPCRs in their native cell membrane environment. Our efforts are focused on the phylum Platyhelminthes, given the heavy health burden exacted by pathogenic flatworms, as well as the role of free-living flatworms as model organisms for the study of developmental biology. RNA interference (RNAi) was used in conjunction with a biochemical endpoint assay to monitor cAMP modulation in response to the translational suppression of individual receptors. As proof of principle, this approach was used to confirm the neuropeptide GYIRFamide as the cognate ligand for the planarian neuropeptide receptor GtNPR-1, while revealing its endogenous coupling to Ga i/o. The method was then extended to deorphanize a novel Ga s-coupled planarian serotonin receptor, DtSER-1. A bioinformatics protocol guided the selection of receptor candidates mediating 5-HT-evoked responses. These results provide functional data on a neurotransmitter central to flatworm biology, while establishing the great potential of an RNAi-based deorphanization protocol. Future work can help optimize and adapt this protocol for higher-throughput platforms as well as other phyla.
1. Purpose During the COVID 19 Pandemic, the NFL teams have been reported to have limited trainin... more 1. Purpose During the COVID 19 Pandemic, the NFL teams have been reported to have limited training sections in preparation for their games. This study compares the prevalence of injury during the 2018, 2019, and 2020 NFL seasons, with the aim to determine the potential causes of the differences in prevalence. 2. Method Official injury reports from each team were counted during the 17-week regular season of each year (2018, 2019, and 2020). The data was analyzed using an unpaired t-test to compare the injury prevalence between each of the three seasons. 3. Results The 2018 season produced a total of 1,561 injuries and a mean of 48.78 injuries per team. The 2019 season produced a total of 1,897 injuries and mean of 59.28 injuries per team, while the 2020 season produced a total of 2, 484 injuries and mean of 77.63 injuries per team. An unpaired t-test was performed using the data to compare the mean number of injuries per team of each of the seasons. Comparison of the 2020 season agai...
Dirofilaria immitis is the causative agent of heartworm disease in North America. The adult nemat... more Dirofilaria immitis is the causative agent of heartworm disease in North America. The adult nematodes are typically found in the pulmonary arteries leading to respiratory, cardiac and systemic illness. In this report, the authors describe an aberrant migration of adult D immitis associated with fibrinous lesions in the peritoneum of a dog. The nematode was recovered during routine ovariohysterectomy. Examination of the organism revealed that the anterior end of the nematode contained several insignificant cranial papillae and no lips while the caudal region contained two rows of papillae. Histological examination demonstrated coelomyarian musculature and prominent lateral internal cuticular ridges. Subsequent amplification of a region of the 16S rRNA gene confirmed the authors’ diagnosis of D immitis. Diagnosis of nematode parasites often heavily relies on the location of the worm and the identity of the host. This case highlights the use of integrating morphological, histopathologi...
Objective-To evaluate the effect of IV administration of polymyxin B on clinical and serum bioche... more Objective-To evaluate the effect of IV administration of polymyxin B on clinical and serum biochemical variables in foals with experimental endotoxemia. Design-Prospective experimental study. Animals-14 healthy neonatal foals. Procedures-Foals were randomly assigned to a treatment or control group and were administered a single dose of lipopolysaccharide (0.5 μg/kg [0.23 μg/lb]) IV over 30 minutes. The treatment group received polymyxin B (6,000 U/kg [2,727 U/lb], IV) immediately after completion of lipopolysaccharide infusion; the control group was administered an equal volume of saline (0.9% NaCl) solution. Subsequent doses of polymyxin B or saline solution were administered IV at 8 and 16 hours. Blood was collected at various time points, and outcome variables, including heart rate, respiratory rate, rectal temperature, attitude score, WBC count, neutrophil count, lymphocyte count, monocyte count, platelet count, Hct, blood lactate concentration, blood glucose concentration, serum tumor necrosis factor-α concentration, and plasma thromboxane B 2 concentration, were measured. Urine was collected prior to and after experimentation to determine whether nephrotoxicosis was associated with treatment. Results-The treatment group had significantly lower blood lactate concentration and serum tumor necrosis factor-α and plasma thromboxane B 2 concentrations and had higher blood glucose concentrations and better attitude scores, compared with the control group, at various time points during the study. No other significant differences and no evidence of overt nephrotoxicosis were detected. Conclusions and Clinical Relevance-Administration of polymyxin B IV in healthy neonatal foals challenged with lipopolysaccharide attenuated some clinical and serum biochemical derangements associated with endotoxemia.
GPCRs represent the largest known superfamily of membrane proteins extending throughout the Metaz... more GPCRs represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms. We validate and describe an alternative loss-of-function approach for ascertaining the ligand and G protein coupling properties of GPCRs in their native cell membrane environment. Our efforts are focused on the phylum Platyhelminthes, given the heavy health burden exacted by pathogenic flatworms, as well as the role of free-living flatworms as model organisms for the study of developmental biology. RNA interference (RNAi) was used in conjunction with a biochemical endpoint assay to monitor cAMP modulation in response to the translational suppression of individual receptors. As proof of principle, this approach was used to confirm the neuropeptide GYIRFamide as the cognate ligand for the planarian neuropeptide receptor GtNPR-1, while revealing its endogenous coupling to G αi/o. The
Plos Pathogens, Feb 1, 2014
Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The dr... more Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents.
Veterinary parasitology, Jan 15, 2015
Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to ... more Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to conventional treatments. Ivermectin is a very effective anthelmintic used against a variety of parasites but this drug is not consistently effective against alpaca meningeal worms once the parasite has gained access to the CNS, even if used in a protracted treatment protocol. Ivermectin is not effective against clinical cases of P. tenuis, raising the possibility that the drug is not sustained at therapeutic concentrations in the central nervous system (CNS). A specific protein (designated as p-glycoprotein (PGP)) effluxes ivermectin from the brain at the blood-brain barrier, thus hampering the maintenance of therapeutic concentrations of the drug in the CNS. Minocycline is a synthetic tetracycline antibiotic with an excellent safety profile in all animals tested to date. Minocycline has three unique characteristics that could be useful for treating meningeal worms in conjunction with iv...
PLOS Neglected Tropical Diseases, 2015
Lymphatic filariasis (LF) is a socioeconomically devastating mosquito-borne Neglected Tropical Di... more Lymphatic filariasis (LF) is a socioeconomically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30-120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers.
PLOS Neglected Tropical Diseases, 2015
Praziquantel (PZQ) is a key therapy for treatment of parasitic flatworm infections of humans and ... more Praziquantel (PZQ) is a key therapy for treatment of parasitic flatworm infections of humans and livestock, but the mechanism of action of this drug is unresolved. Resolving PZQ-engaged targets and effectors is important for identifying new druggable pathways that may yield novel antiparasitic agents. Here we use functional, genetic and pharmacological approaches to reveal that serotonergic signals antagonize PZQ action in vivo. Exogenous 5-hydroxytryptamine (5-HT) rescued PZQ-evoked polarity and mobility defects in freeliving planarian flatworms. In contrast, knockdown of a prevalently expressed planarian 5-HT receptor potentiated or phenocopied PZQ action in different functional assays. Subsequent screening of serotonergic ligands revealed that several ergot alkaloids possessed broad efficacy at modulating regenerative outcomes and the mobility of both free living and parasitic flatworms. Ergot alkaloids that phenocopied PZQ in regenerative assays to cause bipolar regeneration exhibited structural modifications consistent with serotonergic blockade. These data suggest that serotonergic activation blocks PZQ action in vivo, while serotonergic antagonists phenocopy PZQ action. Importantly these studies identify the ergot alkaloid scaffold as a promising structural framework for designing potent agents targeting parasitic bioaminergic G protein coupled receptors.
In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of... more In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of Salmonella in cattle, we evaluated protozoan G protein-coupled receptors (GPCRs) as transducers of Salmonella engulfment by the model protozoan Tetrahymena. Our laboratory previously demonstrated that non-pathogenic protozoa (including Tetrahymena) engulf Salmonella and then exacerbate its virulence in cattle, but the mechanistic details of the phenomenon are not fully understood. GPCRs were investigated since these receptors facilitate phagocytosis of particulates by Tetrahymena, and a GPCR apparently modulates bacterial engulfment for the pathogenic protozoan Entamoeba histolytica. A database search identified three putative Tetrahymena GPCRs, based on sequence homologies and predicted transmembrane domains, that were the focus of this study. Salmonella engulfment by Tetrahymena was assessed in the presence of suramin, a non-specific GPCR inhibitor. Salmonella engulfment was also assessed in Tetrahymena in which expression of putative GPCRs was knocked-down using RNAi. A candidate GPCR was then expressed in a heterologous yeast expression system for further characterization. Our results revealed that Tetrahymena were less efficient at engulfing Salmonella in the presence of suramin. Engulfment was reduced concordantly with a reduction in the density of protozoa. RNAi-based studies revealed that knock-down of one the Tetrahymena GPCRs caused diminished engulfment of Salmonella. Tetrahymena lysates activated this receptor in the heterologous expression system. These data demonstrate that the Tetrahymena receptor is a putative GPCR that facilitates bacterial engulfment by Tetrahymena. Activation of the putative GPCR seemed to be related to protozoan cell density, suggesting that its cognate ligand is an intercellular signaling molecule.
Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease ... more Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs. MATERIALS AND METHODS Creation of the yeast expression vector encoding EhGPCR-1. DNA encoding EhGPCR-1 (accession number AY880672) was synthesized by GeneScript via codon optimization for yeast expression. The gene was cloned into the pUC57 vector, and the cDNA was amplified with forward
Background: Neglected diseases caused by helminth infections impose a massive hindrance to progre... more Background: Neglected diseases caused by helminth infections impose a massive hindrance to progress in the developing world. While basic research on parasitic flatworms (platyhelminths) continues to expand, researchers have yet to broadly adopt a free-living model to complement the study of these important parasites. Methods: We report the high-coverage sequencing (RNA-Seq) and assembly of the transcriptome of the planarian Girardia tigrina across a set of dynamic conditions. The assembly was annotated and extensive orthology analysis was used to seed a pipeline for the rational prioritization and validation of putative anthelmintic targets. A small number of targets conserved between parasitic and free-living flatworms were comparatively interrogated. Results: 240 million paired-end reads were assembled de novo to produce a strictly filtered predicted proteome consisting of over 22,000 proteins. Gene Ontology annotations were extended to 16,467 proteins. 2,693 sequences were identified in orthology groups spanning flukes, tapeworms and planaria, with 441 highlighted as belonging to druggable protein families. Chemical inhibitors were used on three targets in pharmacological screens using both planaria and schistosomula, revealing distinct motility phenotypes that were shown to correlate with planarian RNAi phenotypes. Conclusions: This work provides the first comprehensive and annotated sequence resource for the model planarian G. tigrina, alongside a prioritized list of candidate drug targets conserved among parasitic and free-living flatworms. As proof of principle, we show that a simple RNAi and pharmacology pipeline in the more convenient planarian model system can inform parasite biology and serve as an efficient screening tool for the identification of lucrative anthelmintic targets.
PLoS ONE, 2012
G protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins ... more G protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many target organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms. We validate and describe an alternative loss-of-function approach for ascertaining the ligand and G protein coupling properties of GPCRs in their native cell membrane environment. Our efforts are focused on the phylum Platyhelminthes, given the heavy health burden exacted by pathogenic flatworms, as well as the role of free-living flatworms as model organisms for the study of developmental biology. RNA interference (RNAi) was used in conjunction with a biochemical endpoint assay to monitor cAMP modulation in response to the translational suppression of individual receptors. As proof of principle, this approach was used to confirm the neuropeptide GYIRFamide as the cognate ligand for the planarian neuropeptide receptor GtNPR-1, while revealing its endogenous coupling to Ga i/o. The method was then extended to deorphanize a novel Ga s-coupled planarian serotonin receptor, DtSER-1. A bioinformatics protocol guided the selection of receptor candidates mediating 5-HT-evoked responses. These results provide functional data on a neurotransmitter central to flatworm biology, while establishing the great potential of an RNAi-based deorphanization protocol. Future work can help optimize and adapt this protocol for higher-throughput platforms as well as other phyla.