Qing-peng Kong - Academia.edu (original) (raw)
Papers by Qing-peng Kong
Engineering Structures, 2011
Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, a... more Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, as well as the C150T polymorphism in the non-coding region in previous studies especially in Europeans. This study investigated the potential association between the mtDNA C150T polymorphism and longevity in a Han Chinese population. Leukocyte mtDNAs from two groups of a Han Chinese population living in Dujiangyan city
Biochemical and Biophysical Research Communications, 2005
An up-to-date view of the worldwide mitochondrial DNA (mtDNA) phylogeny together with an evaluati... more An up-to-date view of the worldwide mitochondrial DNA (mtDNA) phylogeny together with an evaluation of the conservation of each site is a reliable tool for detecting errors in mtDNA studies and assessing the functional importance of alleged pathogenic mutations. However, most of the published studies on mitochondrial diseases make very little use of the phylogenetic knowledge that is currently available. This drawback has two inadvertent consequences: first, there is no sufficient a posteriori quality assessment of complete mtDNA sequencing efforts; and second, no feedback is provided for the general mtDNA database when apparently new mtDNA lineages are discovered. We demonstrate, by way of example, these issues by reanalysing three mtDNA sequencing attempts, two from Europe and another one from East Asia. To further validate our phylogenetic deductions, we completely sequenced two mtDNAs from healthy subjects that nearly match the mtDNAs of two patients, whose sequences gave problematic results.
Human Molecular Genetics, 2006
Knowledge about the world phylogeny of human mitochondrial DNA (mtDNA) is essential not only for ... more Knowledge about the world phylogeny of human mitochondrial DNA (mtDNA) is essential not only for evaluating the pathogenic role of specific mtDNA mutations but also for performing reliable association studies between mtDNA haplogroups and complex disorders. In the past few years, the main features of the East Asian portion of the mtDNA phylogeny have been determined on the basis of complete sequencing efforts, but representatives of several basal lineages were still lacking. Moreover, some recently published complete mtDNA sequences did apparently not fit into the known phylogenetic tree and conflicted with the established nomenclature. To refine the East Asian mtDNA tree and resolve data conflicts, we first completely sequenced 20 carefully selected mtDNAs-likely representatives of novel sub-haplogroups-and then, in order to distinguish diagnostic mutations of novel haplogroups from private variants, we applied a 'motifsearch' procedure to a large sample collection. The novel information was incorporated into an updated East Asian mtDNA tree encompassing more than 1000 (near-) complete mtDNA sequences. A reassessment of the mtDNA data from a series of disease studies testified to the usefulness of such a refined mtDNA tree in evaluating the pathogenicity of mtDNA mutations. In particular, the claimed pathogenic role of mutations G3316A, T3394C, A4833G and G15497A appears to be most questionable as those initial claims were derived from anecdotal findings rather than e.g. appropriate association studies. Following a guideline based on the phylogenetic knowledge as proposed here could help avoiding similar problems in the future.
PLoS ONE, 2008
Only a limited number of complete mitochondrial genome sequences belonging to Native American hap... more Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds. Citation: Achilli A, Perego UA, Bravi CM, Coble MD, Kong Q-P, et al (2008) The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies. PLoS ONE 3(3): e1764.
Scientific reports, 2015
Given the existence of plenty of river valleys connecting Southeast and East Asia, it is possible... more Given the existence of plenty of river valleys connecting Southeast and East Asia, it is possible that some inland route(s) might have been adopted by the initial settlers to migrate into the interior of East Asia. Here we analyzed mitochondrial DNA (mtDNA) HVS variants of 845 newly collected individuals from 14 Myanmar populations and 5,907 published individuals from 115 populations from Myanmar and its surroundings. Enrichment of basal lineages with the highest genetic diversity in Myanmar suggests that Myanmar was likely one of the differentiation centers of the early modern humans. Intriguingly, some haplogroups were shared merely between Myanmar and southwestern China, hinting certain genetic connection between both regions. Further analyses revealed that such connection was in fact attributed to both recent gene flow and certain ancient dispersals from Myanmar to southwestern China during 25-10 kya, suggesting that, besides the coastal route, the early modern humans also adopt...
PloS one, 2015
It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of ex... more It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation sequencing. 626 differentially methylated regions (DMRs) were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer's disease. This pattern remai...
To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of ... more To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of China, we have sequenced the two hypervariable segments of the control region and the segment spanning nucleotide positions 10171-10659 of the coding region, and we have identified a number of specific coding-region mutations by direct sequencing or restriction-fragment-length-polymorphism tests. This allows us to define new haplogroups (clades of the mtDNA phylogeny) and to dissect the Han mtDNA pool on a phylogenetic basis, which is a prerequisite for any fine-grained phylogeographic analysis, the interpretation of ancient mtDNA, or future complete mtDNA sequencing efforts. Some of the haplogroups under study differ considerably in frequencies across different provinces. The southernmost provinces show more pronounced contrasts in their regional Han mtDNA pools than the central and northern provinces. These and other features of the geographical distribution of the mtDNA haplogroups observed in the Han Chinese make an initial Paleolithic colonization from south to north plausible but would suggest subsequent migration events in China that mainly proceeded from north to south and east to west. Lumping together all regional Han mtDNA pools into one fictive general mtDNA pool or choosing one or two regional Han populations to represent all Han Chinese is inappropriate for prehistoric considerations as well as for forensic purposes or medical disease studies.
In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which su... more In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which substituted methionine in the translational initiation codon of the NADH dehydrogenase subunit 5 gene (ND5) with threonine. This nucleotide change was originally identified in two mtDNAs belonging to haplogroup F2 by our previous complete sequencing of 48 mtDNAs. Since then, a total of 76 F2 mtDNAs have been identified by the variations occurring in the hypervariable segments and coding regions among more than 3,000 individuals across China. As the T12338C change was detected in 32 samples representing various sub-clades of the F2 haplogroup while not in 14 non-F2 controls, we believe that the T12338C change is specific to the F2 haplogroup. As F2 and its sub-clades were widely distributed in normal individuals of various Chinese populations, we conclude that T12338C is not pathogenic. In addition, based on the average distribution frequency, haplotype diversity and nucleotide diversity of haplogroup F2 in the populations across China, the T12338C nucleotide substitution seems to have been occurred in north China about 42,000 years ago. Our results provided a good paradigm for distinguishing a polymorphic change from a pathogenic mutation based on mtDNA phylogeny.
Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum... more Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia. A total of 837 M9a'b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly collected in this study) pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-nine representative samples were further selected for total mitochondrial DNA sequencing so we could better understand the phylogeny within M9a'b. Based on the updated phylogeny, an extensive phylogeographic analysis was carried out to reveal the differentiation of haplogroup…
Experimental Gerontology, 2011
Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, a... more Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, as well as the C150T polymorphism in the non-coding region in previous studies especially in Europeans. This study investigated the potential association between the mtDNA C150T polymorphism and longevity in a Han Chinese population. Leukocyte mtDNAs from two groups of a Han Chinese population living in Dujiangyan city of Sichuan province, including 556 longevous individuals (90-108 years-old) and 403 unrelated controls, were analyzed and mtDNA haplogroups were determined by sequencing control regions and restriction fragment length polymorphisms (RFLPs) in coding regions. Our results did not show a universal association between the mitochondrial C150T polymorphism and longevity in this population. Even when mtDNA haplogroups defined by C150T and gender were taken into account, there was no significant association with longevity. In conclusion, the mtDNA C150T polymorphism could not present an accumulation in an elderly Han Chinese population. Previous association studies might have been influenced by nuclear DNA and/or environment factors.
ELECTROPHORESIS, 2005
Phantom mutations are systematic artifacts generated in the course of the sequencing process. Con... more Phantom mutations are systematic artifacts generated in the course of the sequencing process. Contra common belief these artificial mutations are nearly ubiquitous in sequencing results, albeit at frequencies that may vary dramatically. The amount of artifacts depends not only on the sort of automated sequencer and sequencing chemistry employed to some extent, but also on other lab-specific factors. An experimental study executed on four samples under various combinations of sequencing conditions revealed a number of phantom mutations occurring at the same sites of mitochondrial DNA (mtDNA) repeatedly. To confirm these and identify further hotspots for artifacts, . 5000 mtDNA electropherograms were screened for artificial patterns. Further, . 30 000 published hypervariable segment I sequences were compared at potential hotspots for phantom mutations, especially for variation at positions 16085 and 16197. Resequencing of several samples confirmed the artificial nature of these and other polymorphisms in the original publications. Single-strand sequencing, as typically executed in medical and anthropological studies, is thus highly vulnerable to this kind of artifacts. In particular, phantom mutation hotspots could easily lead to misidentification of somatic mutations and to misinterpretations in all kinds of clinical mtDNA studies.
BMC Biology, 2011
Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum... more Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia. A total of 837 M9a'b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly collected in this study) pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-nine representative samples were further selected for total mitochondrial DNA sequencing so we could better understand the phylogeny within M9a'b. Based on the updated phylogeny, an extensive phylogeographic analysis was carried out to reveal the differentiation of haplogroup…
Engineering Structures, 2011
Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, a... more Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, as well as the C150T polymorphism in the non-coding region in previous studies especially in Europeans. This study investigated the potential association between the mtDNA C150T polymorphism and longevity in a Han Chinese population. Leukocyte mtDNAs from two groups of a Han Chinese population living in Dujiangyan city
Biochemical and Biophysical Research Communications, 2005
An up-to-date view of the worldwide mitochondrial DNA (mtDNA) phylogeny together with an evaluati... more An up-to-date view of the worldwide mitochondrial DNA (mtDNA) phylogeny together with an evaluation of the conservation of each site is a reliable tool for detecting errors in mtDNA studies and assessing the functional importance of alleged pathogenic mutations. However, most of the published studies on mitochondrial diseases make very little use of the phylogenetic knowledge that is currently available. This drawback has two inadvertent consequences: first, there is no sufficient a posteriori quality assessment of complete mtDNA sequencing efforts; and second, no feedback is provided for the general mtDNA database when apparently new mtDNA lineages are discovered. We demonstrate, by way of example, these issues by reanalysing three mtDNA sequencing attempts, two from Europe and another one from East Asia. To further validate our phylogenetic deductions, we completely sequenced two mtDNAs from healthy subjects that nearly match the mtDNAs of two patients, whose sequences gave problematic results.
Human Molecular Genetics, 2006
Knowledge about the world phylogeny of human mitochondrial DNA (mtDNA) is essential not only for ... more Knowledge about the world phylogeny of human mitochondrial DNA (mtDNA) is essential not only for evaluating the pathogenic role of specific mtDNA mutations but also for performing reliable association studies between mtDNA haplogroups and complex disorders. In the past few years, the main features of the East Asian portion of the mtDNA phylogeny have been determined on the basis of complete sequencing efforts, but representatives of several basal lineages were still lacking. Moreover, some recently published complete mtDNA sequences did apparently not fit into the known phylogenetic tree and conflicted with the established nomenclature. To refine the East Asian mtDNA tree and resolve data conflicts, we first completely sequenced 20 carefully selected mtDNAs-likely representatives of novel sub-haplogroups-and then, in order to distinguish diagnostic mutations of novel haplogroups from private variants, we applied a 'motifsearch' procedure to a large sample collection. The novel information was incorporated into an updated East Asian mtDNA tree encompassing more than 1000 (near-) complete mtDNA sequences. A reassessment of the mtDNA data from a series of disease studies testified to the usefulness of such a refined mtDNA tree in evaluating the pathogenicity of mtDNA mutations. In particular, the claimed pathogenic role of mutations G3316A, T3394C, A4833G and G15497A appears to be most questionable as those initial claims were derived from anecdotal findings rather than e.g. appropriate association studies. Following a guideline based on the phylogenetic knowledge as proposed here could help avoiding similar problems in the future.
PLoS ONE, 2008
Only a limited number of complete mitochondrial genome sequences belonging to Native American hap... more Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds. Citation: Achilli A, Perego UA, Bravi CM, Coble MD, Kong Q-P, et al (2008) The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies. PLoS ONE 3(3): e1764.
Scientific reports, 2015
Given the existence of plenty of river valleys connecting Southeast and East Asia, it is possible... more Given the existence of plenty of river valleys connecting Southeast and East Asia, it is possible that some inland route(s) might have been adopted by the initial settlers to migrate into the interior of East Asia. Here we analyzed mitochondrial DNA (mtDNA) HVS variants of 845 newly collected individuals from 14 Myanmar populations and 5,907 published individuals from 115 populations from Myanmar and its surroundings. Enrichment of basal lineages with the highest genetic diversity in Myanmar suggests that Myanmar was likely one of the differentiation centers of the early modern humans. Intriguingly, some haplogroups were shared merely between Myanmar and southwestern China, hinting certain genetic connection between both regions. Further analyses revealed that such connection was in fact attributed to both recent gene flow and certain ancient dispersals from Myanmar to southwestern China during 25-10 kya, suggesting that, besides the coastal route, the early modern humans also adopt...
PloS one, 2015
It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of ex... more It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation sequencing. 626 differentially methylated regions (DMRs) were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer's disease. This pattern remai...
To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of ... more To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of China, we have sequenced the two hypervariable segments of the control region and the segment spanning nucleotide positions 10171-10659 of the coding region, and we have identified a number of specific coding-region mutations by direct sequencing or restriction-fragment-length-polymorphism tests. This allows us to define new haplogroups (clades of the mtDNA phylogeny) and to dissect the Han mtDNA pool on a phylogenetic basis, which is a prerequisite for any fine-grained phylogeographic analysis, the interpretation of ancient mtDNA, or future complete mtDNA sequencing efforts. Some of the haplogroups under study differ considerably in frequencies across different provinces. The southernmost provinces show more pronounced contrasts in their regional Han mtDNA pools than the central and northern provinces. These and other features of the geographical distribution of the mtDNA haplogroups observed in the Han Chinese make an initial Paleolithic colonization from south to north plausible but would suggest subsequent migration events in China that mainly proceeded from north to south and east to west. Lumping together all regional Han mtDNA pools into one fictive general mtDNA pool or choosing one or two regional Han populations to represent all Han Chinese is inappropriate for prehistoric considerations as well as for forensic purposes or medical disease studies.
In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which su... more In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which substituted methionine in the translational initiation codon of the NADH dehydrogenase subunit 5 gene (ND5) with threonine. This nucleotide change was originally identified in two mtDNAs belonging to haplogroup F2 by our previous complete sequencing of 48 mtDNAs. Since then, a total of 76 F2 mtDNAs have been identified by the variations occurring in the hypervariable segments and coding regions among more than 3,000 individuals across China. As the T12338C change was detected in 32 samples representing various sub-clades of the F2 haplogroup while not in 14 non-F2 controls, we believe that the T12338C change is specific to the F2 haplogroup. As F2 and its sub-clades were widely distributed in normal individuals of various Chinese populations, we conclude that T12338C is not pathogenic. In addition, based on the average distribution frequency, haplotype diversity and nucleotide diversity of haplogroup F2 in the populations across China, the T12338C nucleotide substitution seems to have been occurred in north China about 42,000 years ago. Our results provided a good paradigm for distinguishing a polymorphic change from a pathogenic mutation based on mtDNA phylogeny.
Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum... more Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia. A total of 837 M9a'b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly collected in this study) pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-nine representative samples were further selected for total mitochondrial DNA sequencing so we could better understand the phylogeny within M9a'b. Based on the updated phylogeny, an extensive phylogeographic analysis was carried out to reveal the differentiation of haplogroup…
Experimental Gerontology, 2011
Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, a... more Human longevity has been associated with mitochondrial DNA (mtDNA) coding region polymorphisms, as well as the C150T polymorphism in the non-coding region in previous studies especially in Europeans. This study investigated the potential association between the mtDNA C150T polymorphism and longevity in a Han Chinese population. Leukocyte mtDNAs from two groups of a Han Chinese population living in Dujiangyan city of Sichuan province, including 556 longevous individuals (90-108 years-old) and 403 unrelated controls, were analyzed and mtDNA haplogroups were determined by sequencing control regions and restriction fragment length polymorphisms (RFLPs) in coding regions. Our results did not show a universal association between the mitochondrial C150T polymorphism and longevity in this population. Even when mtDNA haplogroups defined by C150T and gender were taken into account, there was no significant association with longevity. In conclusion, the mtDNA C150T polymorphism could not present an accumulation in an elderly Han Chinese population. Previous association studies might have been influenced by nuclear DNA and/or environment factors.
ELECTROPHORESIS, 2005
Phantom mutations are systematic artifacts generated in the course of the sequencing process. Con... more Phantom mutations are systematic artifacts generated in the course of the sequencing process. Contra common belief these artificial mutations are nearly ubiquitous in sequencing results, albeit at frequencies that may vary dramatically. The amount of artifacts depends not only on the sort of automated sequencer and sequencing chemistry employed to some extent, but also on other lab-specific factors. An experimental study executed on four samples under various combinations of sequencing conditions revealed a number of phantom mutations occurring at the same sites of mitochondrial DNA (mtDNA) repeatedly. To confirm these and identify further hotspots for artifacts, . 5000 mtDNA electropherograms were screened for artificial patterns. Further, . 30 000 published hypervariable segment I sequences were compared at potential hotspots for phantom mutations, especially for variation at positions 16085 and 16197. Resequencing of several samples confirmed the artificial nature of these and other polymorphisms in the original publications. Single-strand sequencing, as typically executed in medical and anthropological studies, is thus highly vulnerable to this kind of artifacts. In particular, phantom mutation hotspots could easily lead to misidentification of somatic mutations and to misinterpretations in all kinds of clinical mtDNA studies.
BMC Biology, 2011
Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum... more Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia. A total of 837 M9a'b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly collected in this study) pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-nine representative samples were further selected for total mitochondrial DNA sequencing so we could better understand the phylogeny within M9a'b. Based on the updated phylogeny, an extensive phylogeographic analysis was carried out to reveal the differentiation of haplogroup…