Rafquat Rana - Academia.edu (original) (raw)
Uploads
Papers by Rafquat Rana
AAPS PharmSciTech, 2019
The attempts to oral delivery of lipids can be challenging. Self-emulsifying drug delivery system... more The attempts to oral delivery of lipids can be challenging. Self-emulsifying drug delivery system (SEDDS) plays a vital role to tackle this problem. SEDDS is composed of an oil phase, surfactants, co-surfactants, emulsifying agents, and co-solvents. SEDDS can be categorized into self-nano-emulsifying agents (SNEDDS) and self-micro-emulsifying agents (SMEDDS). The characterization of SEDDS includes size, zeta potential analysis, and surface morphology via electron microscopy and phase separation methods. SEDDS can be well characterized through different techniques for size and morphology. Supersaturation is the phenomenon applied in case of SEDDS, in which polymers and copolymers are used for SEDDS preparation. A supersaturated SEDDS formulation kinetically and thermodynamically inhibits the precipitation of drug molecules by retarding nucleation and crystal growth in the aqueous medium. Self-emulsification approach has been successful in the delivery of anti-cancer agents, anti-viral drugs, anti-bacterial, immunosuppressant, and natural products such as antioxidants as well as alkaloids. At present, more than four SEDDS drug products are available in the market. SEDDS have tremendous capabilities which are yet to be explored which would be beneficial in oral lipid delivery.
Bioanalysis
Aim: A novel HPLC method was developed and validated for the simultaneous estimation of paclitaxe... more Aim: A novel HPLC method was developed and validated for the simultaneous estimation of paclitaxel (PTX) and baicalein (BAC). Materials & methods: The analytes were resolved in a C18 column using the aqueous solution of formic acid (0.10% v/v) and MeOH (30:70 v/v). Results: The developed method was found to be linear over the concentration ranges 0.039–10 μg/ml and 0.019–10 μg/ml for PTX and BAC, respectively. The lower limits of quantification obtained were 0.042 μg/ml and 0.361 μg/ml for PTX and BAC, respectively. Conclusion: The developed method was found to be precise and accurate as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines, for simultaneous estimation of PTX and BAC, having an application in formulation development and bioanalytical studies.
AAPS PharmSciTech, 2019
The attempts to oral delivery of lipids can be challenging. Self-emulsifying drug delivery system... more The attempts to oral delivery of lipids can be challenging. Self-emulsifying drug delivery system (SEDDS) plays a vital role to tackle this problem. SEDDS is composed of an oil phase, surfactants, co-surfactants, emulsifying agents, and co-solvents. SEDDS can be categorized into self-nano-emulsifying agents (SNEDDS) and self-micro-emulsifying agents (SMEDDS). The characterization of SEDDS includes size, zeta potential analysis, and surface morphology via electron microscopy and phase separation methods. SEDDS can be well characterized through different techniques for size and morphology. Supersaturation is the phenomenon applied in case of SEDDS, in which polymers and copolymers are used for SEDDS preparation. A supersaturated SEDDS formulation kinetically and thermodynamically inhibits the precipitation of drug molecules by retarding nucleation and crystal growth in the aqueous medium. Self-emulsification approach has been successful in the delivery of anti-cancer agents, anti-viral drugs, anti-bacterial, immunosuppressant, and natural products such as antioxidants as well as alkaloids. At present, more than four SEDDS drug products are available in the market. SEDDS have tremendous capabilities which are yet to be explored which would be beneficial in oral lipid delivery.
Bioanalysis
Aim: A novel HPLC method was developed and validated for the simultaneous estimation of paclitaxe... more Aim: A novel HPLC method was developed and validated for the simultaneous estimation of paclitaxel (PTX) and baicalein (BAC). Materials & methods: The analytes were resolved in a C18 column using the aqueous solution of formic acid (0.10% v/v) and MeOH (30:70 v/v). Results: The developed method was found to be linear over the concentration ranges 0.039–10 μg/ml and 0.019–10 μg/ml for PTX and BAC, respectively. The lower limits of quantification obtained were 0.042 μg/ml and 0.361 μg/ml for PTX and BAC, respectively. Conclusion: The developed method was found to be precise and accurate as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines, for simultaneous estimation of PTX and BAC, having an application in formulation development and bioanalytical studies.