Rangaraj Selvarangan - Academia.edu (original) (raw)
Uploads
Papers by Rangaraj Selvarangan
Emerging Infectious Diseases, 2019
Recent parechovirus A3 (PeV-A3) outbreaks in Australia suggest lower population immunity compared... more Recent parechovirus A3 (PeV-A3) outbreaks in Australia suggest lower population immunity compared with regions that have endemic PeV-A3 circulation. A serosurvey among populations in the Netherlands, the United States, and Australia before and after the 2013 Australia outbreak showed high PeV-A3 neutralizing antibody prevalence across all regions and time periods, indicating widespread circulation. P arechovirus A3 (PeV-A3), belonging to the Picornavirus family, can cause respiratory and gastrointestinal symptoms, as well as meningitis and sepsis-like disease in infants (1). PeV-A3 was isolated from a fecal specimen collected in 1999 from a child with fever, diarrhea, and transient paralysis; it has been gaining increasing interest because of reported outbreaks of severe illness in neonates (2-4). To date the largest outbreaks have been caused by a recombinant PeV-A3 strain in Australia: in New South Wales in 2013, and in Victoria in 2015 (4). Humoral immunity is essential in protection against PeV-A3 disease, yet seroepidemiological data on population immunity are limited (5,6). We describe the findings of a cross-sectional study on serum PeV-A3 neutralizing antibody (nAb) levels among children and adults from Victoria and New South Wales, Australia; Missouri, USA; and the Netherlands, where PeVs circulate every 2 years during summer and fall months (3,7).
Journal of Clinical Microbiology
Among known parechovirus (PeV) types infecting humans, PeV-A3 (formerly HPeV3) and PeV-A1 (former... more Among known parechovirus (PeV) types infecting humans, PeV-A3 (formerly HPeV3) and PeV-A1 (formerly HPeV1) are associated with pediatric central nervous system (CNS) infections. The prevalence of PeV-A3 among hospitalized infants with sepsis-like illness and viral CNS infection is well described; however, the contribution of PeV-A4 to infant CNS infection is relatively unexplored. We report the first 11 U.S. cases of PeV-A4 CNS infections occurring in Kansas City infants during 2010-2016 and compare the clinical presentation with that of PeV-A3. PeV-positive cerebrospinal fluid (CSF) specimens from 2010 to 2016 underwent sequencing for genotyping. Among all PeV-CSF positives, PeV-A4 was detected in 11 CSF samples from 2010 to 2016. PeV-A4 was first detected in 2010 (n=1/4), followed by detections in 2014 (n=1/39), 2015 (n=6/9), and 2016 (n=3/33). The median age of PeV-A4 infected infants in weeks (median: 4; range: 1-8) were similar to that of infants infected with PeV-A3 (median: 4...
The Lancet Respiratory Medicine, 2015
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on ... more Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Background Enterovirus D68 (EV-D68) has been infrequently reported historically, and is typically... more Background Enterovirus D68 (EV-D68) has been infrequently reported historically, and is typically associated with isolated cases or small clusters of respiratory illness. Beginning in August, 2014, increases in severe respiratory illness associated with EV-D68 were reported across the USA. We aimed to describe the clinical, epidemiological, and laboratory features of this outbreak, and to better understand the role of EV-D68 in severe respiratory illness.
Emerging Infectious Diseases, 2019
Recent parechovirus A3 (PeV-A3) outbreaks in Australia suggest lower population immunity compared... more Recent parechovirus A3 (PeV-A3) outbreaks in Australia suggest lower population immunity compared with regions that have endemic PeV-A3 circulation. A serosurvey among populations in the Netherlands, the United States, and Australia before and after the 2013 Australia outbreak showed high PeV-A3 neutralizing antibody prevalence across all regions and time periods, indicating widespread circulation. P arechovirus A3 (PeV-A3), belonging to the Picornavirus family, can cause respiratory and gastrointestinal symptoms, as well as meningitis and sepsis-like disease in infants (1). PeV-A3 was isolated from a fecal specimen collected in 1999 from a child with fever, diarrhea, and transient paralysis; it has been gaining increasing interest because of reported outbreaks of severe illness in neonates (2-4). To date the largest outbreaks have been caused by a recombinant PeV-A3 strain in Australia: in New South Wales in 2013, and in Victoria in 2015 (4). Humoral immunity is essential in protection against PeV-A3 disease, yet seroepidemiological data on population immunity are limited (5,6). We describe the findings of a cross-sectional study on serum PeV-A3 neutralizing antibody (nAb) levels among children and adults from Victoria and New South Wales, Australia; Missouri, USA; and the Netherlands, where PeVs circulate every 2 years during summer and fall months (3,7).
Journal of Clinical Microbiology
Among known parechovirus (PeV) types infecting humans, PeV-A3 (formerly HPeV3) and PeV-A1 (former... more Among known parechovirus (PeV) types infecting humans, PeV-A3 (formerly HPeV3) and PeV-A1 (formerly HPeV1) are associated with pediatric central nervous system (CNS) infections. The prevalence of PeV-A3 among hospitalized infants with sepsis-like illness and viral CNS infection is well described; however, the contribution of PeV-A4 to infant CNS infection is relatively unexplored. We report the first 11 U.S. cases of PeV-A4 CNS infections occurring in Kansas City infants during 2010-2016 and compare the clinical presentation with that of PeV-A3. PeV-positive cerebrospinal fluid (CSF) specimens from 2010 to 2016 underwent sequencing for genotyping. Among all PeV-CSF positives, PeV-A4 was detected in 11 CSF samples from 2010 to 2016. PeV-A4 was first detected in 2010 (n=1/4), followed by detections in 2014 (n=1/39), 2015 (n=6/9), and 2016 (n=3/33). The median age of PeV-A4 infected infants in weeks (median: 4; range: 1-8) were similar to that of infants infected with PeV-A3 (median: 4...
The Lancet Respiratory Medicine, 2015
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on ... more Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Background Enterovirus D68 (EV-D68) has been infrequently reported historically, and is typically... more Background Enterovirus D68 (EV-D68) has been infrequently reported historically, and is typically associated with isolated cases or small clusters of respiratory illness. Beginning in August, 2014, increases in severe respiratory illness associated with EV-D68 were reported across the USA. We aimed to describe the clinical, epidemiological, and laboratory features of this outbreak, and to better understand the role of EV-D68 in severe respiratory illness.