Ricardo Luzietti - Academia.edu (original) (raw)

Uploads

Papers by Ricardo Luzietti

Research paper thumbnail of Absorption, distribution, metabolism and elimination of 14C-ETX0914, a novel inhibitor of bacterial type-II topoisomerases in rodents

Research paper thumbnail of In vitro and in vivo metabolism of 14 C-AZ11, a novel inhibitor of bacterial DNA gyrase/type II topoisomerase

Xenobiotica, 2015

1. (2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-((S)-4-methyl-2-oxooxazolidin-3-yl)-2,4,4a,6-tetrahydro-1... more 1. (2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-((S)-4-methyl-2-oxooxazolidin-3-yl)-2,4,4a,6-tetrahydro-1H,1'H-spiro [isoxazolo[4,5-g][1,4]oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(3'H)-trione (AZ11) is a novel mode-of-inhibition bacterial topoisomerase inhibitor that entered preclinical development for the treatment of Gram-positive bacteria infection. 2. The in vitro biotransformation studies of AZ11 using mouse, rat, dog and human hepatocytes showed low-intrinsic clearance in all species attributed to microsomal metabolism. 3. After a single intravenous administration of [14C]AZ11 in bile duct cannulated rats, the mean percentage of dose recovered in rat urine, bile and feces was approximately 18, 36 and 42%, respectively. Unchanged AZ11 recovered in rat urine and bile was less than 9% of the dose, indicating that AZ11 underwent extensive metabolism in rats. 4. The most abundant in vivo metabolite detected in urine and bile was M1 formed via ring opening on the piperidine and morpholine rings accounting for 20% of the administered dose. The major fecal metabolite was M5, which accounted for approximately 32% of administered dose. M5 was not formed when AZ11 incubated with rat intestinal microsomes and cytosol but was formed when incubated with fresh rat feces, suggesting that unchanged AZ11 was directly excreted into gut lumen where M5 formed as an intestinal microflora-mediated product. This process could have significant impact on bioavailability or exposure of AZ11 in rat.

Research paper thumbnail of Relative Contributions of CYP3A4 vs. CYP3A5 for CYP3A Cleared Drugs Assessed In Vitro Using a CYP3A4 Selective Inactivator (CYP3cide)

Drug Metabolism and Disposition, 2014

Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Design... more Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Designation of metabolism by CYP3A commonly refers to the potential contribution by one or both of two enzymes, CYP3A4 and CYP3A5. The metabolic turnover of 32 drugs known to be largely metabolized by CYP3A was examined in human liver microsomes (HLMs) from CYP3A5 expressers (*1/*1 genotype) and nonexpressers (*3/*3 genotype) in the presence and absence of ketoconazole and CYP3cide (a selective CYP3A4 inactivator) to calculate the contribution of CYP3A5 to metabolism. Drugs with the highest contribution of CYP3A5 included atazanavir, vincristine, midazolam, vardenafil, otenabant, verapamil, and tacrolimus, whereas 17 of the 32 tested showed negligible CYP3A5 contribution. For specific reactions in HLMs from *1/*1 donors, CYP3A5 contributes 55% and 44% to midazolam 19-and 4-hydroxylation, 16% to testosterone 6bhydroxylation, 56% and 19% to alprazolam 19-and 4-hydroxylation, 10% to tamoxifen N-demethylation, and 58% to atazanavir p-hydroxylation. Comparison of the in vitro observations to clinical pharmacokinetic data showed only a weak relationship between estimated contribution by CYP3A5 and impact of CYP3A5 genotype on oral clearance, in large part because of the scatter in clinical data and the low numbers of study subjects used in CYP3A5 pharmacogenetics studies. These data should be useful in guiding which drugs should be evaluated for differences in pharmacokinetics and metabolism between subjects expressing CYP3A5 and those who do not express this enzyme.

Research paper thumbnail of Pharmacokinetics of the natural antibiotic negamycin

Xenobiotica, 2015

Abstract 1. Negamycin exerts its antimicrobial activity by inhibiting bacterial protein synthesis... more Abstract 1. Negamycin exerts its antimicrobial activity by inhibiting bacterial protein synthesis and is efficacious in animal models of infection. In order to optimize negamycin exposure for therapeutic purposes, its pharmacokinetics in pre-clinical species were determined. 2. Negamycin has a dipeptide-like structure with logD7.4 < -1, causing low permeation into Caco-2 cells, low-oral bioavailability in rats of 6% and low-plasma protein binding of 10% in mouse, rat, dog and human plasma. Negamycin degradation rates in microsomes and hepatocytes predicted low-hepatic intrinsic clearance in pre-clinical species, which was confirmed in vivo where clearance varied between 3.4 and 11.5 mL/min/kg and virtually all negamycin was cleared unchanged renally. The similar behavior in multiple animal species allowed for the prediction of systemic clearance and volume of distribution in humans using multiple-scaling methods and physiological-based pharmacokinetic modeling and simulation. 3. Only 0.05-0.25% (mol/mol) of administered negamycin was recovered as 2-(1-methylhydrazinyl)acetic acid, a potential reactive metabolite, from rat and dog urine, respectively. 4. In summary, negamycin is a very polar molecule with low-plasma protein binding and low-oral bioavailability that is slowly and exclusively cleared into the urine. Its physicochemical properties make intravenous or intramuscular administration, or a derivative thereof, for therapeutic purposes most likely.

Research paper thumbnail of Absorption, distribution, metabolism and elimination of 14C-ETX0914, a novel inhibitor of bacterial type-II topoisomerases in rodents

Research paper thumbnail of In vitro and in vivo metabolism of 14 C-AZ11, a novel inhibitor of bacterial DNA gyrase/type II topoisomerase

Xenobiotica, 2015

1. (2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-((S)-4-methyl-2-oxooxazolidin-3-yl)-2,4,4a,6-tetrahydro-1... more 1. (2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-((S)-4-methyl-2-oxooxazolidin-3-yl)-2,4,4a,6-tetrahydro-1H,1'H-spiro [isoxazolo[4,5-g][1,4]oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(3'H)-trione (AZ11) is a novel mode-of-inhibition bacterial topoisomerase inhibitor that entered preclinical development for the treatment of Gram-positive bacteria infection. 2. The in vitro biotransformation studies of AZ11 using mouse, rat, dog and human hepatocytes showed low-intrinsic clearance in all species attributed to microsomal metabolism. 3. After a single intravenous administration of [14C]AZ11 in bile duct cannulated rats, the mean percentage of dose recovered in rat urine, bile and feces was approximately 18, 36 and 42%, respectively. Unchanged AZ11 recovered in rat urine and bile was less than 9% of the dose, indicating that AZ11 underwent extensive metabolism in rats. 4. The most abundant in vivo metabolite detected in urine and bile was M1 formed via ring opening on the piperidine and morpholine rings accounting for 20% of the administered dose. The major fecal metabolite was M5, which accounted for approximately 32% of administered dose. M5 was not formed when AZ11 incubated with rat intestinal microsomes and cytosol but was formed when incubated with fresh rat feces, suggesting that unchanged AZ11 was directly excreted into gut lumen where M5 formed as an intestinal microflora-mediated product. This process could have significant impact on bioavailability or exposure of AZ11 in rat.

Research paper thumbnail of Relative Contributions of CYP3A4 vs. CYP3A5 for CYP3A Cleared Drugs Assessed In Vitro Using a CYP3A4 Selective Inactivator (CYP3cide)

Drug Metabolism and Disposition, 2014

Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Design... more Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Designation of metabolism by CYP3A commonly refers to the potential contribution by one or both of two enzymes, CYP3A4 and CYP3A5. The metabolic turnover of 32 drugs known to be largely metabolized by CYP3A was examined in human liver microsomes (HLMs) from CYP3A5 expressers (*1/*1 genotype) and nonexpressers (*3/*3 genotype) in the presence and absence of ketoconazole and CYP3cide (a selective CYP3A4 inactivator) to calculate the contribution of CYP3A5 to metabolism. Drugs with the highest contribution of CYP3A5 included atazanavir, vincristine, midazolam, vardenafil, otenabant, verapamil, and tacrolimus, whereas 17 of the 32 tested showed negligible CYP3A5 contribution. For specific reactions in HLMs from *1/*1 donors, CYP3A5 contributes 55% and 44% to midazolam 19-and 4-hydroxylation, 16% to testosterone 6bhydroxylation, 56% and 19% to alprazolam 19-and 4-hydroxylation, 10% to tamoxifen N-demethylation, and 58% to atazanavir p-hydroxylation. Comparison of the in vitro observations to clinical pharmacokinetic data showed only a weak relationship between estimated contribution by CYP3A5 and impact of CYP3A5 genotype on oral clearance, in large part because of the scatter in clinical data and the low numbers of study subjects used in CYP3A5 pharmacogenetics studies. These data should be useful in guiding which drugs should be evaluated for differences in pharmacokinetics and metabolism between subjects expressing CYP3A5 and those who do not express this enzyme.

Research paper thumbnail of Pharmacokinetics of the natural antibiotic negamycin

Xenobiotica, 2015

Abstract 1. Negamycin exerts its antimicrobial activity by inhibiting bacterial protein synthesis... more Abstract 1. Negamycin exerts its antimicrobial activity by inhibiting bacterial protein synthesis and is efficacious in animal models of infection. In order to optimize negamycin exposure for therapeutic purposes, its pharmacokinetics in pre-clinical species were determined. 2. Negamycin has a dipeptide-like structure with logD7.4 < -1, causing low permeation into Caco-2 cells, low-oral bioavailability in rats of 6% and low-plasma protein binding of 10% in mouse, rat, dog and human plasma. Negamycin degradation rates in microsomes and hepatocytes predicted low-hepatic intrinsic clearance in pre-clinical species, which was confirmed in vivo where clearance varied between 3.4 and 11.5 mL/min/kg and virtually all negamycin was cleared unchanged renally. The similar behavior in multiple animal species allowed for the prediction of systemic clearance and volume of distribution in humans using multiple-scaling methods and physiological-based pharmacokinetic modeling and simulation. 3. Only 0.05-0.25% (mol/mol) of administered negamycin was recovered as 2-(1-methylhydrazinyl)acetic acid, a potential reactive metabolite, from rat and dog urine, respectively. 4. In summary, negamycin is a very polar molecule with low-plasma protein binding and low-oral bioavailability that is slowly and exclusively cleared into the urine. Its physicochemical properties make intravenous or intramuscular administration, or a derivative thereof, for therapeutic purposes most likely.