Richard Svanbäck - Academia.edu (original) (raw)
Uploads
Papers by Richard Svanbäck
Biological Reviews, 2019
A major goal of evolutionary science is to understand how biological diversity is generated and a... more A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo
Evolution, 2012
Intraguild predation-competition and predation by the same antagonist-is widespread, but its evol... more Intraguild predation-competition and predation by the same antagonist-is widespread, but its evolutionary consequences are unknown. Intraguild prey may evolve antipredator defenses, superior competitive ability on shared resources, or the ability to use an alternative resource, any of which may alter the structure of the food web. We tested for evolutionary responses by threespine stickleback to a benthic intraguild predator, prickly sculpin. We used a comparative morphometric analysis to show that stickleback sympatric with sculpin are more armored and have more limnetic-like body shapes than allopatric stickleback. To test the ecological implications of this shift, we conducted a mesocosm experiment that varied sculpin presence and stickleback population of origin (from one sympatric and one allopatric lake). Predation by sculpin greatly increased the mortality of allopatric stickleback. In contrast, sculpin presence did not affect the mortality of sympatric stickleback, although they did have lower growth rates suggesting increased nonpredatory effects of sculpin. Consistent with their morphology, sympatric stickleback included more pelagic prey in their diets, leading to depletion of zooplankton in the mesocosms. These findings suggest that intraguild prey evolution has altered food web structure by reducing both predation by the intraguild predator and diet overlap between species.
The turnover and distribution of energy and nutrients in food webs is influenced by consumer stoi... more The turnover and distribution of energy and nutrients in food webs is influenced by consumer stoichiometry. Although the stoichiometry of heterotrophs is generally considered to vary only little, there may be intraspecific variation due to factors such as habitat, resources, ontogeny and size. We examined intraspecific variation in Eurasian perch Perca fluviatilis stoichiometry, a common species that exhibits habitat and resource specialization, ontogenetic niche shifts and a large size range. This study investigated the elemental stoichiometry of a wide size range of perch from littoral and pelagic habitats. The mean C:N:P stoichiometry of whole perch was 37:9:1 (molar ratios). However, %C, %P, C:N, C:P and N:P varied with size, morphology, habitat and diet category. These factors together explained 24-40% of the variation in C:N:P stoichiometry. In contrast, perch stoichiometry was not related to diet stoichiometry, suggesting that the former is homeostatically regulated. The results suggest that the high P content of perch may result in stoichiometric constraints on the growth of non-piscivorous perch, and that piscivory is an efficient strategy for acquiring P. Resource polymorphism, individual diet specialization and intraspecific size variation are widespread among animals. Thus changes in stoichiometry with size, habitat, morphology and resource use, and therefore also stoichiometric demands, are probably common.
Ecology, Jan 1, 2002
Many apparently generalized species are in fact composed of individual specialists that use a sma... more Many apparently generalized species are in fact composed of individual specialists that use a small subset of the population's resource distribution. Niche variation is usually established by testing the null hypothesis that individuals draw from a common resource distribution. This approach encourages a publication bias in which negative results are rarely reported, and obscures variation in the degree of individual specialization, limiting our ability to carry out comparative studies of the causes or consequences of niche variation. To facilitate studies of the degree of individual specialization, this paper outlines four quantitative indices of intrapopulation variation in resource use. Traditionally, such variation has been measured by partitioning the population's total niche width into within-and between-individual, sex, or phenotype components. We suggest two alternative measures that quantify the mean resource overlap between an individual and its population, and we discuss the advantages and disadvantages of all four measures. The utility of all indices depends on the quality of the empirical data. If resources are measured in a coarse-grained manner, individuals may falsely appear generalized. Alternatively, specialization may be overestimated by cross-sectional sampling schemes where diet variation can reflect a patchy environment. Isotope ratios, parasites, or diet-morphology correlations can complement cross-sectional data to establish temporal consistency of individual specialization.
Biological Reviews, 2019
A major goal of evolutionary science is to understand how biological diversity is generated and a... more A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo
Evolution, 2012
Intraguild predation-competition and predation by the same antagonist-is widespread, but its evol... more Intraguild predation-competition and predation by the same antagonist-is widespread, but its evolutionary consequences are unknown. Intraguild prey may evolve antipredator defenses, superior competitive ability on shared resources, or the ability to use an alternative resource, any of which may alter the structure of the food web. We tested for evolutionary responses by threespine stickleback to a benthic intraguild predator, prickly sculpin. We used a comparative morphometric analysis to show that stickleback sympatric with sculpin are more armored and have more limnetic-like body shapes than allopatric stickleback. To test the ecological implications of this shift, we conducted a mesocosm experiment that varied sculpin presence and stickleback population of origin (from one sympatric and one allopatric lake). Predation by sculpin greatly increased the mortality of allopatric stickleback. In contrast, sculpin presence did not affect the mortality of sympatric stickleback, although they did have lower growth rates suggesting increased nonpredatory effects of sculpin. Consistent with their morphology, sympatric stickleback included more pelagic prey in their diets, leading to depletion of zooplankton in the mesocosms. These findings suggest that intraguild prey evolution has altered food web structure by reducing both predation by the intraguild predator and diet overlap between species.
The turnover and distribution of energy and nutrients in food webs is influenced by consumer stoi... more The turnover and distribution of energy and nutrients in food webs is influenced by consumer stoichiometry. Although the stoichiometry of heterotrophs is generally considered to vary only little, there may be intraspecific variation due to factors such as habitat, resources, ontogeny and size. We examined intraspecific variation in Eurasian perch Perca fluviatilis stoichiometry, a common species that exhibits habitat and resource specialization, ontogenetic niche shifts and a large size range. This study investigated the elemental stoichiometry of a wide size range of perch from littoral and pelagic habitats. The mean C:N:P stoichiometry of whole perch was 37:9:1 (molar ratios). However, %C, %P, C:N, C:P and N:P varied with size, morphology, habitat and diet category. These factors together explained 24-40% of the variation in C:N:P stoichiometry. In contrast, perch stoichiometry was not related to diet stoichiometry, suggesting that the former is homeostatically regulated. The results suggest that the high P content of perch may result in stoichiometric constraints on the growth of non-piscivorous perch, and that piscivory is an efficient strategy for acquiring P. Resource polymorphism, individual diet specialization and intraspecific size variation are widespread among animals. Thus changes in stoichiometry with size, habitat, morphology and resource use, and therefore also stoichiometric demands, are probably common.
Ecology, Jan 1, 2002
Many apparently generalized species are in fact composed of individual specialists that use a sma... more Many apparently generalized species are in fact composed of individual specialists that use a small subset of the population's resource distribution. Niche variation is usually established by testing the null hypothesis that individuals draw from a common resource distribution. This approach encourages a publication bias in which negative results are rarely reported, and obscures variation in the degree of individual specialization, limiting our ability to carry out comparative studies of the causes or consequences of niche variation. To facilitate studies of the degree of individual specialization, this paper outlines four quantitative indices of intrapopulation variation in resource use. Traditionally, such variation has been measured by partitioning the population's total niche width into within-and between-individual, sex, or phenotype components. We suggest two alternative measures that quantify the mean resource overlap between an individual and its population, and we discuss the advantages and disadvantages of all four measures. The utility of all indices depends on the quality of the empirical data. If resources are measured in a coarse-grained manner, individuals may falsely appear generalized. Alternatively, specialization may be overestimated by cross-sectional sampling schemes where diet variation can reflect a patchy environment. Isotope ratios, parasites, or diet-morphology correlations can complement cross-sectional data to establish temporal consistency of individual specialization.