Rohit Singh - Academia.edu (original) (raw)
Address: New Delhi, India
less
Uploads
Papers by Rohit Singh
Abstract Developments in the field of wireless networks have led to the phase where it has now be... more Abstract Developments in the field of wireless networks have led to the phase where it has now become important to offer the members connected in a wireless network with a secure and efficient group key management system for accessing numerous services. A secure ...
Journal of Organic Chemistry, 2003
Journal of Organic Chemistry, 2004
Chemical Communications, 2005
Journal of Organometallic Chemistry, 2003
We describe an algorithm, IsoRank, for global alignment of two protein-protein interaction (PPI) ... more We describe an algorithm, IsoRank, for global alignment of two protein-protein interaction (PPI) networks. IsoRank aims to maximize the overall match between the two networks; in contrast, much of previous work has focused on the local alignment problem— identifying many possible alignments, each corresponding to a local region of similarity. IsoRank is guided by the intuition that a protein should be matched with a protein in the other network if and only if the neighbors of the two proteins can also be well matched. We encode this intuition as an eigenvalue problem, in a manner analogous to Google’s PageRank method. We use IsoRank to compute the first known global alignment between the S. cerevisiae and D. melanogaster PPI networks. The common subgraph has 1420 edges and describes conserved functional components between the two species. Comparisons of our results with those of a well-known algorithm for local network alignment indicate that the globally optimized alignment resolves ambiguity introduced by multiple local alignments. Finally, we interpret the results of global alignment to identify functional orthologs between yeast and fly; our functional ortholog prediction method is much simpler than a recently proposed approach and yet provides results that are more comprehensive.
Journal of Computational Biology, 2007
We introduce a computational method to predict and annotate the catalytic residues of a protein u... more We introduce a computational method to predict and annotate the catalytic residues of a protein using only its sequence information, so that we describe both the residues' sequence locations (prediction) and their specific biochemical roles in the catalyzed reaction (annotation). While knowing the chemistry of an enzyme's catalytic residues is essential to understanding its function, the challenges of prediction and annotation have remained difficult, especially when only the enzyme's sequence and no homologous structures are available. Our sequence-based approach follows the guiding principle that catalytic residues performing the same biochemical function should have similar chemical environments; it detects specific conservation patterns near in sequence to known catalytic residues and accordingly constrains what combination of amino acids can be present near a predicted catalytic residue. We associate with each catalytic residue a short sequence profile and define a Kullback-Leibler (KL) distance measure between these profiles, which, as we show, effectively captures even subtle biochemical variations. We apply the method to the class of glycohydrolase enzymes. This class includes proteins from 96 families with very different sequences and folds, many of which perform important functions. In a cross-validation test, our approach correctly predicts the location of the enzymes' catalytic residues with a sensitivity of 80% at a specificity of 99.4%, and in a separate cross-validation we also correctly annotate the biochemical role of 80% of the catalytic residues. Our results compare favorably to existing methods. Moreover, our method is more broadly applicable because it relies on sequence and not structure information; it may, furthermore, be used in conjunction with structure-based methods.
Bioinformatics/computer Applications in The Biosciences, 2009
Proceedings of The National Academy of Sciences, 2008
Abstract Developments in the field of wireless networks have led to the phase where it has now be... more Abstract Developments in the field of wireless networks have led to the phase where it has now become important to offer the members connected in a wireless network with a secure and efficient group key management system for accessing numerous services. A secure ...
Journal of Organic Chemistry, 2003
Journal of Organic Chemistry, 2004
Chemical Communications, 2005
Journal of Organometallic Chemistry, 2003
We describe an algorithm, IsoRank, for global alignment of two protein-protein interaction (PPI) ... more We describe an algorithm, IsoRank, for global alignment of two protein-protein interaction (PPI) networks. IsoRank aims to maximize the overall match between the two networks; in contrast, much of previous work has focused on the local alignment problem— identifying many possible alignments, each corresponding to a local region of similarity. IsoRank is guided by the intuition that a protein should be matched with a protein in the other network if and only if the neighbors of the two proteins can also be well matched. We encode this intuition as an eigenvalue problem, in a manner analogous to Google’s PageRank method. We use IsoRank to compute the first known global alignment between the S. cerevisiae and D. melanogaster PPI networks. The common subgraph has 1420 edges and describes conserved functional components between the two species. Comparisons of our results with those of a well-known algorithm for local network alignment indicate that the globally optimized alignment resolves ambiguity introduced by multiple local alignments. Finally, we interpret the results of global alignment to identify functional orthologs between yeast and fly; our functional ortholog prediction method is much simpler than a recently proposed approach and yet provides results that are more comprehensive.
Journal of Computational Biology, 2007
We introduce a computational method to predict and annotate the catalytic residues of a protein u... more We introduce a computational method to predict and annotate the catalytic residues of a protein using only its sequence information, so that we describe both the residues' sequence locations (prediction) and their specific biochemical roles in the catalyzed reaction (annotation). While knowing the chemistry of an enzyme's catalytic residues is essential to understanding its function, the challenges of prediction and annotation have remained difficult, especially when only the enzyme's sequence and no homologous structures are available. Our sequence-based approach follows the guiding principle that catalytic residues performing the same biochemical function should have similar chemical environments; it detects specific conservation patterns near in sequence to known catalytic residues and accordingly constrains what combination of amino acids can be present near a predicted catalytic residue. We associate with each catalytic residue a short sequence profile and define a Kullback-Leibler (KL) distance measure between these profiles, which, as we show, effectively captures even subtle biochemical variations. We apply the method to the class of glycohydrolase enzymes. This class includes proteins from 96 families with very different sequences and folds, many of which perform important functions. In a cross-validation test, our approach correctly predicts the location of the enzymes' catalytic residues with a sensitivity of 80% at a specificity of 99.4%, and in a separate cross-validation we also correctly annotate the biochemical role of 80% of the catalytic residues. Our results compare favorably to existing methods. Moreover, our method is more broadly applicable because it relies on sequence and not structure information; it may, furthermore, be used in conjunction with structure-based methods.
Bioinformatics/computer Applications in The Biosciences, 2009
Proceedings of The National Academy of Sciences, 2008