Sabeena Saleem - Academia.edu (original) (raw)
Papers by Sabeena Saleem
Sustainability
The objective of this study is to investigate the effect of temperature and wind speed on the per... more The objective of this study is to investigate the effect of temperature and wind speed on the performance of five photovoltaic (PV) module technologies for different climatic zones of Pakistan. The PV module technologies selected were mono-crystalline silicon (MC); poly-crystalline silicon (PC); heterogeneous intrinsic thin-film (TFH); copper–indium–allium–selenide (TFC); and thin-film amorphous silicon (TFA). The module temperature and actual efficiency were calculated using measured data for one year. The actual efficiency of MC, PC, TFH, TFC, and TFA decreases by 3.4, 3.1, 2.2, 3.7, and 2.7%, respectively, considering the effect of temperature only. The actual efficiency of MC, PC, TFH, TFC, and TFA increases by 9.7, 9.0, 6.5, 9.5, and 7.0% considering the effect of both temperature and wind speed. The TFH module is the most efficient (20.76%) and TFC is the least efficient (16.79%) among the five materials. Under the effect of temperature, the actual efficiency of TFH is the lea...
Sustainability
The objective of this study is to investigate the effect of temperature and wind speed on the per... more The objective of this study is to investigate the effect of temperature and wind speed on the performance of five photovoltaic (PV) module technologies for different climatic zones of Pakistan. The PV module technologies selected were mono-crystalline silicon (MC); poly-crystalline silicon (PC); heterogeneous intrinsic thin-film (TFH); copper–indium–allium–selenide (TFC); and thin-film amorphous silicon (TFA). The module temperature and actual efficiency were calculated using measured data for one year. The actual efficiency of MC, PC, TFH, TFC, and TFA decreases by 3.4, 3.1, 2.2, 3.7, and 2.7%, respectively, considering the effect of temperature only. The actual efficiency of MC, PC, TFH, TFC, and TFA increases by 9.7, 9.0, 6.5, 9.5, and 7.0% considering the effect of both temperature and wind speed. The TFH module is the most efficient (20.76%) and TFC is the least efficient (16.79%) among the five materials. Under the effect of temperature, the actual efficiency of TFH is the lea...