Sandra Venske - Academia.edu (original) (raw)

Papers by Sandra Venske

Research paper thumbnail of Algoritmos de computação natural e paralela para o problema do dobramento de proteínas

O problema do dobramento de proteinas e relevante em varias areas como a Biologia, a Farmacia e a... more O problema do dobramento de proteinas e relevante em varias areas como a Biologia, a Farmacia e a Medicina. Algoritmos computacionais que sejam capazes de predizer, com razoavel precisao, a estrutura de proteinas sao muito pertinentes. Este artigo apresenta os resultados do uso do algoritmo evolucionario MOEA/D para o problema do dobramento de proteinas. A principio uma versao sequencial foi implementada, e posteriormente a paralelizacao da mesma foi desenvolvida a fim de realizar analise de desempenho. Outro aspecto importante explicitado neste artigo e relacionado ao software Tinker, usado para a analise de proteinas. Modificacoes no seu codigo fonte original foram realizadas para reduzir o tempo total gasto no processamento.

Research paper thumbnail of Predição da estrutura de proteínas off-lattice usando evolução diferencial multiobjetivo adaptativa

Research paper thumbnail of Multi-objective Quadratic Assignment Problem: An Approach Using a Hyper-Heuristic Based on the Choice Function

The Quadratic Assignment Problem (QAP) is an example of combinatorial optimization problem and it... more The Quadratic Assignment Problem (QAP) is an example of combinatorial optimization problem and it belongs to NP-hard class. QAP assigns interconnected facilities to locations while minimizing the cost of transportation of the flow of commodities between facilities. Hyper-Heuristics (HH) is a high-level approach that automatically selects or generates heuristics for solving complex problems. In this paper is proposed the use of a selection HH to solve the multi-objective QAP (mQAP). This HH is based on the MOEA/DD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition) and Choice Function strategy. The heuristics selected by HH correspond to the operators that generate new solutions in an iteration of the multi-objective evolutionary algorithm. IGD metric and statistical tests are applied in order to evaluate the algorithm performances in 22 mQAP instances. The effectiveness of the proposed method is shown and it is favorably compared with three othe...

Research paper thumbnail of Ab Initio Protein Structure Prediction Using Evolutionary Approach: A Survey

Revista de Informática Teórica e Aplicada, 2021

Protein Structure Prediction (PSP) problem is to determine the three-dimensional structure of a p... more Protein Structure Prediction (PSP) problem is to determine the three-dimensional structure of a protein only from its primary structure. Misfolding of a protein causes human diseases. Thus, the knowledge of the structure and functionality of proteins, combined with the prediction of their structure is a complex problem and a challenge for the area of computational biology. The metaheuristic optimization algorithms are naturally applicable to support in solving NP-hard problems.These algorithms are bio-inspired, since they were designed based on procedures found in nature, such as the successful evolutionary behavior of natural systems. In this paper, we present a survey on methods to approach the \textit{ab initio} protein structure prediction based on evolutionary computing algorithms, considering both single and multi-objective optimization. An overview of the works is presented, with some details about which characteristics of the problem are considered, as well as specific point...

Research paper thumbnail of Adaptive Operator Selection for Many-Objective Optimization with NSGA-III

The number of objectives in real-world problems has increased in recent years and better algorith... more The number of objectives in real-world problems has increased in recent years and better algorithms are needed to deal efficiently with it. One possible improvement to such algorithms is the use of adaptive operator selection mechanisms in many-objective optimization algorithms. In this work, two adaptive operator selection mechanisms, Probability Matching PM and Adaptive Pursuit AP, are incorporated into the NSGA-III framework to autonomously select the most suitable operator while solving a many-objective problem. Our proposed approaches, NSGA-III$$_{\text {AP}}$$ and NSGA-III$$_{\text {PM}}$$, are tested on benchmark instances from the DTLZ and WFG test suits and on instances of the Protein Structure Prediction Problem. Statistical tests are performed to infer the significance of the results. The preliminary results of the proposed approaches are encouraging.

Research paper thumbnail of Typechecking XQuery : A Prototype in ASF

Semistructured data (particularly XML) are the standard data representation for information excha... more Semistructured data (particularly XML) are the standard data representation for information exchange in the world-wide web. A number of query languages for XML has been proposed. Most of them follow the style of SQL. One of these languages is XQuery. In this work, we propose the construction of a prototype for the static type analysis of XQuery programs. The prototype implements XQuery operational semantics, in a way that is close to that proposed by the W3C. The implementation was built using the ASF+SDF meta-environment. The prototype described here is a first step in the construction of a practical XML query language laboratory, in which different semantics for commands may be tested.

Research paper thumbnail of Multi-armed Bandit Based Hyper-Heuristics for the Permutation Flow Shop Problem

2018 7th Brazilian Conference on Intelligent Systems (BRACIS), 2018

In this work, we propose MAB variants as selection mechanisms of a hyper-heuristic running on the... more In this work, we propose MAB variants as selection mechanisms of a hyper-heuristic running on the multi-objective framework named MOEA/D-DRA to solve the Permutation Flow Shop Problem (PFSP). All the variants are designed to choose which of low-level heuristic components (for crossover and mutation operators) should be applied to each solution during execution. FRRMAB is the classical MAB, RMAB is restless and LinUCB is contextual (its context is based on side information). The proposed approaches are compared with each other and the best one, MOEA/D-LinUCB, is compared with MOEA/DDRA using the hypervolume indicator and nonparametric statistical tests. The results demonstrate the robustness of MAB-based approaches, especially the contextual-based one.

Research paper thumbnail of Inductive Inference of LR(0) Grammars

We present a modification to the LR(0) parsing algorithm, to infer new production rules in (LR(0)... more We present a modification to the LR(0) parsing algorithm, to infer new production rules in (LR(0)) context-free grammars. Given a grammar G and strings w Є L(G), w' 62 L(G), such that w' is an update of w, we propose an algorithm to obtain new grammars (extensions of G) to generate the string w'. We propose the Inductive LR(0) algorithm, to build new LR(0) items, to be added to those of the original grammar. These items will be used to define new production rules, to extend the grammar. Our algorithm generates several solutions. The algorithm can be applied in the context of the schema update for semi-structured data (XML). In that context, we suppose that the data administrator is an expert in the field of application of the schema (grammar) being extended. This data administrator will choose the most adequate solution for their needs.

Research paper thumbnail of Comparing Selection Hyper-Heuristics for Many-Objective Numerical Optimization

2021 IEEE Congress on Evolutionary Computation (CEC)

Mechanisms for automatic selection of parameters/heuristics used by evolutionary algorithms can p... more Mechanisms for automatic selection of parameters/heuristics used by evolutionary algorithms can provide more robust and independent approaches. In this work we propose an approach composed of a selection hyper-heuristic implemented within the MOEA/DD (Multi-objective Evolutionary Algorithm based on Dominance and Decomposition) algorithm based on Differential Evolution. Four selection hyper-heuristics are considered in this study: Thompson Sampling, Probability Matching, Adaptive Pursuit and Self-Adaptive Differential Evolution. The hyper-heuristics are employed to choose the crossover operator selected from a pool of operators, according to a probability that reflects the operator’s previous performance during the evolutionary process. The MaF benchmark is considered with 5, 10 and 15 objectives. This benchmark includes a diversity of characteristics, representing the challenges that real-world problems may pose. Statistical tests indicate that the proposed approach performs equally or even outperforms those with fixed crossover operator.

Research paper thumbnail of Differential Evolution to Multi-Objective Protein Structure Prediction

Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, 2012

Protein structure prediction (PSP) is one of the most challenging problems nowadays and an import... more Protein structure prediction (PSP) is one of the most challenging problems nowadays and an important Bioinformatics research topic. In this paper we propose an optimization method based on differential evolution for PSP problem. We model PSP as an optimization problem in order to minimize the potential energy using ab initio approach. This problem is handled here as multi-objective optimization, and it is solved by the evolutionary method of Differential Evolution (DE). An innovative way of choosing the best individual of the population is proposed in this work: the minimum distance to the empirical ideal point. The idea is to guide the population individuals to areas of the Pareto front that correspond to a good compromise of the bonded and non-bonded energies. The proposed approach is validated on some peptides with promising results.

Research paper thumbnail of Evolução Diferencial com ensemble de Operadores de Mutação em GPGPUs para o Despacho Econômico de Energia Elétrica

Revista de Informática Teórica e Aplicada, Dec 3, 2016

Resumo: O Problema do Despacho Econômico de Energia Elétrica (PDEE) visa minimizar o custo de pro... more Resumo: O Problema do Despacho Econômico de Energia Elétrica (PDEE) visa minimizar o custo de produção de energia de uma usina termoelétrica. Após a análise do algoritmo sequencial, neste trabalho, o PDEE será tratado com um algoritmo paralelo para GPGPUs em CUDA. O algoritmo proposto é uma Evolução Diferencial (ED) utilizando a técnica de ensemble de operadores de mutação. A ED é uma técnica estocástica de otimização baseada em população, desenvolvida para a otimização de valores reais enquanto o ensemble de operadores de mutação permite que várias configurações de parâmetros e estratégias possam ser utilizadas em cada etapa da evolução do algoritmo. Três instâncias de teste, considerando os efeitos de ponto de válvula, são adotadas para verificar a eficiência do método proposto. Os resultados obtidos são favoravelmente comparados com aqueles descritos na literatura da área em termos de qualidade das soluções obtidas. A versão paralela obteve speedups significativos mantendo a boa qualidade das soluções encontradas. Palavras-chave: computação evolucionária, ensemble de operadores de mutação, processamento paralelo.

Research paper thumbnail of A New Hyper-Heuristic Based on a Restless Multi-armed Bandit for Multi-objective Optimization

2017 Brazilian Conference on Intelligent Systems (BRACIS)

Research paper thumbnail of Adaptive Operator Selection in NSGA-III

2016 5th Brazilian Conference on Intelligent Systems (BRACIS), 2016

Research paper thumbnail of A New Adaptive Operator Selection for NSGA-III Applied to CEC 2018 Many-Objective Benchmark

2018 7th Brazilian Conference on Intelligent Systems (BRACIS)

Research paper thumbnail of Hyper-heuristics using multi-armed bandit models for multi-objective optimization

Research paper thumbnail of Algoritmo Híbrido para o Problema Flow Shop de Permutação Multiobjetivo

Anais do Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2020)

Os algoritmos evolucionários são uma abordagem não determinística para resolver problemas de otim... more Os algoritmos evolucionários são uma abordagem não determinística para resolver problemas de otimização que não podem ser resolvidos em tempo polinomial, como problemas clássicos NP-Hard. O Flow Shop de Permutação (FSP) é um problema de otimização combinatória do ambiente de produção, em que tarefas devem ser processadas por máquinas, mantendo o mesmo fluxo de processamento. Neste trabalho a abordagem multiobjetivo foi utilizada para o FSP, tendo como objetivos de minimização o makespan e o total flowtime. Dois algoritmos híbridos compostos por NSGA-II com Busca Tabu foram considerados na abordagem e aplicados em 11 instâncias do FSP com diferentes dimensões. Uma análise foi feita sobre o uso de regras de proibição na Busca Tabu e sua restritividade. Os resultados foram analisados utilizando as métricas de qualidade IGD e Função de Conquista Empírica, comparando-os com o NSGA-II canônico.

Research paper thumbnail of An empirical analysis of constraint handling on evolutionary multi-objective algorithms for the Environmental/Economic Load Dispatch problem

Expert Systems with Applications

Research paper thumbnail of Seleção Adaptativa de Operadores Aplicada ao Problema do Despacho Econômico de Energia Elétrica

Anais do Seminário Integrado de Software e Hardware (SEMISH)

O Despacho Econômico de Energia Elétrica é um dos mais importantes problemas na área de geração e... more O Despacho Econômico de Energia Elétrica é um dos mais importantes problemas na área de geração e distribuição de energia elétrica. A Evolução Diferencial é um algoritmo evolutivo eficiente para otimização contínua. Diferentes operadores da Evolução Diferencial são adequados para a resolução de problemas com características diferentes, contudo a escolha do operador mais adequado é uma tarefa complexa. Neste trabalho são investigadas duas técnicas de seleção adaptativa de operadores (Adaptive Pursuit e Probability Matching) para escolher em tempo de execução qual o operador mais eficiente para a resolução do Despacho Econômico de Energia Elétrica. Os algoritmos propostos são validados em problemas de teste que consideram 13 e 40 geradores térmicos e levam em consideração efeitos de ponto de válvula. Os métodos propostos superam os resultados reportados na literatura obtidos por metaheurísticas modernas, sendo capazes de encontrar o melhor valor de custo mínimo conhecido para todos os...

Research paper thumbnail of MOEA/D com Busca Local para o Flow Shop Multiobjetivo

Anais do Encontro Nacional de Inteligência Artificial e Computacional (ENIAC)

Este artigo aborda o Flow Shop de Permutação, um problema de sequenciamento presente em muitos me... more Este artigo aborda o Flow Shop de Permutação, um problema de sequenciamento presente em muitos mecanismos de gerenciamento de processos de produção industrial. A abordagem multiobjetivo considerada neste trabalho envolve a minimização do tempo máximo para completar um trabalho (makespan) e do tempo total de atraso (total tardiness). Para isso é utilizada uma plataforma multiobjetivo denominada MOEA/D-DRA (do inglês Multi-objective Evolutionary Algorithm based on Decomposition with Dynamic Resource Allocation). O foco do trabalho reside na utilização de um mecanismo muito conhecido por seus bons resultados nas versões mono-objetivo do problema. Este mecanismo, denominado NEH, é adaptado para ser utilizado na busca local incluída no MOEA/D-DRA, aplicado na solução de 11 instâncias do Flow Shop de permutação com tamanhos variando de 20 a 200 tarefas e 5 a 20 máquinas. A abordagem proposta é comparada com o MOEA/D-DRA utilizando NEH apenas na inicialização da população. Os resultados mo...

Research paper thumbnail of Predição da Estrutura de Proteínas Utilizando Algoritmo Evolutivo Adaptativo

Anais do 12. Congresso Brasileiro de Inteligência Computacional, 2015

Research paper thumbnail of Algoritmos de computação natural e paralela para o problema do dobramento de proteínas

O problema do dobramento de proteinas e relevante em varias areas como a Biologia, a Farmacia e a... more O problema do dobramento de proteinas e relevante em varias areas como a Biologia, a Farmacia e a Medicina. Algoritmos computacionais que sejam capazes de predizer, com razoavel precisao, a estrutura de proteinas sao muito pertinentes. Este artigo apresenta os resultados do uso do algoritmo evolucionario MOEA/D para o problema do dobramento de proteinas. A principio uma versao sequencial foi implementada, e posteriormente a paralelizacao da mesma foi desenvolvida a fim de realizar analise de desempenho. Outro aspecto importante explicitado neste artigo e relacionado ao software Tinker, usado para a analise de proteinas. Modificacoes no seu codigo fonte original foram realizadas para reduzir o tempo total gasto no processamento.

Research paper thumbnail of Predição da estrutura de proteínas off-lattice usando evolução diferencial multiobjetivo adaptativa

Research paper thumbnail of Multi-objective Quadratic Assignment Problem: An Approach Using a Hyper-Heuristic Based on the Choice Function

The Quadratic Assignment Problem (QAP) is an example of combinatorial optimization problem and it... more The Quadratic Assignment Problem (QAP) is an example of combinatorial optimization problem and it belongs to NP-hard class. QAP assigns interconnected facilities to locations while minimizing the cost of transportation of the flow of commodities between facilities. Hyper-Heuristics (HH) is a high-level approach that automatically selects or generates heuristics for solving complex problems. In this paper is proposed the use of a selection HH to solve the multi-objective QAP (mQAP). This HH is based on the MOEA/DD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition) and Choice Function strategy. The heuristics selected by HH correspond to the operators that generate new solutions in an iteration of the multi-objective evolutionary algorithm. IGD metric and statistical tests are applied in order to evaluate the algorithm performances in 22 mQAP instances. The effectiveness of the proposed method is shown and it is favorably compared with three othe...

Research paper thumbnail of Ab Initio Protein Structure Prediction Using Evolutionary Approach: A Survey

Revista de Informática Teórica e Aplicada, 2021

Protein Structure Prediction (PSP) problem is to determine the three-dimensional structure of a p... more Protein Structure Prediction (PSP) problem is to determine the three-dimensional structure of a protein only from its primary structure. Misfolding of a protein causes human diseases. Thus, the knowledge of the structure and functionality of proteins, combined with the prediction of their structure is a complex problem and a challenge for the area of computational biology. The metaheuristic optimization algorithms are naturally applicable to support in solving NP-hard problems.These algorithms are bio-inspired, since they were designed based on procedures found in nature, such as the successful evolutionary behavior of natural systems. In this paper, we present a survey on methods to approach the \textit{ab initio} protein structure prediction based on evolutionary computing algorithms, considering both single and multi-objective optimization. An overview of the works is presented, with some details about which characteristics of the problem are considered, as well as specific point...

Research paper thumbnail of Adaptive Operator Selection for Many-Objective Optimization with NSGA-III

The number of objectives in real-world problems has increased in recent years and better algorith... more The number of objectives in real-world problems has increased in recent years and better algorithms are needed to deal efficiently with it. One possible improvement to such algorithms is the use of adaptive operator selection mechanisms in many-objective optimization algorithms. In this work, two adaptive operator selection mechanisms, Probability Matching PM and Adaptive Pursuit AP, are incorporated into the NSGA-III framework to autonomously select the most suitable operator while solving a many-objective problem. Our proposed approaches, NSGA-III$$_{\text {AP}}$$ and NSGA-III$$_{\text {PM}}$$, are tested on benchmark instances from the DTLZ and WFG test suits and on instances of the Protein Structure Prediction Problem. Statistical tests are performed to infer the significance of the results. The preliminary results of the proposed approaches are encouraging.

Research paper thumbnail of Typechecking XQuery : A Prototype in ASF

Semistructured data (particularly XML) are the standard data representation for information excha... more Semistructured data (particularly XML) are the standard data representation for information exchange in the world-wide web. A number of query languages for XML has been proposed. Most of them follow the style of SQL. One of these languages is XQuery. In this work, we propose the construction of a prototype for the static type analysis of XQuery programs. The prototype implements XQuery operational semantics, in a way that is close to that proposed by the W3C. The implementation was built using the ASF+SDF meta-environment. The prototype described here is a first step in the construction of a practical XML query language laboratory, in which different semantics for commands may be tested.

Research paper thumbnail of Multi-armed Bandit Based Hyper-Heuristics for the Permutation Flow Shop Problem

2018 7th Brazilian Conference on Intelligent Systems (BRACIS), 2018

In this work, we propose MAB variants as selection mechanisms of a hyper-heuristic running on the... more In this work, we propose MAB variants as selection mechanisms of a hyper-heuristic running on the multi-objective framework named MOEA/D-DRA to solve the Permutation Flow Shop Problem (PFSP). All the variants are designed to choose which of low-level heuristic components (for crossover and mutation operators) should be applied to each solution during execution. FRRMAB is the classical MAB, RMAB is restless and LinUCB is contextual (its context is based on side information). The proposed approaches are compared with each other and the best one, MOEA/D-LinUCB, is compared with MOEA/DDRA using the hypervolume indicator and nonparametric statistical tests. The results demonstrate the robustness of MAB-based approaches, especially the contextual-based one.

Research paper thumbnail of Inductive Inference of LR(0) Grammars

We present a modification to the LR(0) parsing algorithm, to infer new production rules in (LR(0)... more We present a modification to the LR(0) parsing algorithm, to infer new production rules in (LR(0)) context-free grammars. Given a grammar G and strings w Є L(G), w' 62 L(G), such that w' is an update of w, we propose an algorithm to obtain new grammars (extensions of G) to generate the string w'. We propose the Inductive LR(0) algorithm, to build new LR(0) items, to be added to those of the original grammar. These items will be used to define new production rules, to extend the grammar. Our algorithm generates several solutions. The algorithm can be applied in the context of the schema update for semi-structured data (XML). In that context, we suppose that the data administrator is an expert in the field of application of the schema (grammar) being extended. This data administrator will choose the most adequate solution for their needs.

Research paper thumbnail of Comparing Selection Hyper-Heuristics for Many-Objective Numerical Optimization

2021 IEEE Congress on Evolutionary Computation (CEC)

Mechanisms for automatic selection of parameters/heuristics used by evolutionary algorithms can p... more Mechanisms for automatic selection of parameters/heuristics used by evolutionary algorithms can provide more robust and independent approaches. In this work we propose an approach composed of a selection hyper-heuristic implemented within the MOEA/DD (Multi-objective Evolutionary Algorithm based on Dominance and Decomposition) algorithm based on Differential Evolution. Four selection hyper-heuristics are considered in this study: Thompson Sampling, Probability Matching, Adaptive Pursuit and Self-Adaptive Differential Evolution. The hyper-heuristics are employed to choose the crossover operator selected from a pool of operators, according to a probability that reflects the operator’s previous performance during the evolutionary process. The MaF benchmark is considered with 5, 10 and 15 objectives. This benchmark includes a diversity of characteristics, representing the challenges that real-world problems may pose. Statistical tests indicate that the proposed approach performs equally or even outperforms those with fixed crossover operator.

Research paper thumbnail of Differential Evolution to Multi-Objective Protein Structure Prediction

Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, 2012

Protein structure prediction (PSP) is one of the most challenging problems nowadays and an import... more Protein structure prediction (PSP) is one of the most challenging problems nowadays and an important Bioinformatics research topic. In this paper we propose an optimization method based on differential evolution for PSP problem. We model PSP as an optimization problem in order to minimize the potential energy using ab initio approach. This problem is handled here as multi-objective optimization, and it is solved by the evolutionary method of Differential Evolution (DE). An innovative way of choosing the best individual of the population is proposed in this work: the minimum distance to the empirical ideal point. The idea is to guide the population individuals to areas of the Pareto front that correspond to a good compromise of the bonded and non-bonded energies. The proposed approach is validated on some peptides with promising results.

Research paper thumbnail of Evolução Diferencial com ensemble de Operadores de Mutação em GPGPUs para o Despacho Econômico de Energia Elétrica

Revista de Informática Teórica e Aplicada, Dec 3, 2016

Resumo: O Problema do Despacho Econômico de Energia Elétrica (PDEE) visa minimizar o custo de pro... more Resumo: O Problema do Despacho Econômico de Energia Elétrica (PDEE) visa minimizar o custo de produção de energia de uma usina termoelétrica. Após a análise do algoritmo sequencial, neste trabalho, o PDEE será tratado com um algoritmo paralelo para GPGPUs em CUDA. O algoritmo proposto é uma Evolução Diferencial (ED) utilizando a técnica de ensemble de operadores de mutação. A ED é uma técnica estocástica de otimização baseada em população, desenvolvida para a otimização de valores reais enquanto o ensemble de operadores de mutação permite que várias configurações de parâmetros e estratégias possam ser utilizadas em cada etapa da evolução do algoritmo. Três instâncias de teste, considerando os efeitos de ponto de válvula, são adotadas para verificar a eficiência do método proposto. Os resultados obtidos são favoravelmente comparados com aqueles descritos na literatura da área em termos de qualidade das soluções obtidas. A versão paralela obteve speedups significativos mantendo a boa qualidade das soluções encontradas. Palavras-chave: computação evolucionária, ensemble de operadores de mutação, processamento paralelo.

Research paper thumbnail of A New Hyper-Heuristic Based on a Restless Multi-armed Bandit for Multi-objective Optimization

2017 Brazilian Conference on Intelligent Systems (BRACIS)

Research paper thumbnail of Adaptive Operator Selection in NSGA-III

2016 5th Brazilian Conference on Intelligent Systems (BRACIS), 2016

Research paper thumbnail of A New Adaptive Operator Selection for NSGA-III Applied to CEC 2018 Many-Objective Benchmark

2018 7th Brazilian Conference on Intelligent Systems (BRACIS)

Research paper thumbnail of Hyper-heuristics using multi-armed bandit models for multi-objective optimization

Research paper thumbnail of Algoritmo Híbrido para o Problema Flow Shop de Permutação Multiobjetivo

Anais do Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2020)

Os algoritmos evolucionários são uma abordagem não determinística para resolver problemas de otim... more Os algoritmos evolucionários são uma abordagem não determinística para resolver problemas de otimização que não podem ser resolvidos em tempo polinomial, como problemas clássicos NP-Hard. O Flow Shop de Permutação (FSP) é um problema de otimização combinatória do ambiente de produção, em que tarefas devem ser processadas por máquinas, mantendo o mesmo fluxo de processamento. Neste trabalho a abordagem multiobjetivo foi utilizada para o FSP, tendo como objetivos de minimização o makespan e o total flowtime. Dois algoritmos híbridos compostos por NSGA-II com Busca Tabu foram considerados na abordagem e aplicados em 11 instâncias do FSP com diferentes dimensões. Uma análise foi feita sobre o uso de regras de proibição na Busca Tabu e sua restritividade. Os resultados foram analisados utilizando as métricas de qualidade IGD e Função de Conquista Empírica, comparando-os com o NSGA-II canônico.

Research paper thumbnail of An empirical analysis of constraint handling on evolutionary multi-objective algorithms for the Environmental/Economic Load Dispatch problem

Expert Systems with Applications

Research paper thumbnail of Seleção Adaptativa de Operadores Aplicada ao Problema do Despacho Econômico de Energia Elétrica

Anais do Seminário Integrado de Software e Hardware (SEMISH)

O Despacho Econômico de Energia Elétrica é um dos mais importantes problemas na área de geração e... more O Despacho Econômico de Energia Elétrica é um dos mais importantes problemas na área de geração e distribuição de energia elétrica. A Evolução Diferencial é um algoritmo evolutivo eficiente para otimização contínua. Diferentes operadores da Evolução Diferencial são adequados para a resolução de problemas com características diferentes, contudo a escolha do operador mais adequado é uma tarefa complexa. Neste trabalho são investigadas duas técnicas de seleção adaptativa de operadores (Adaptive Pursuit e Probability Matching) para escolher em tempo de execução qual o operador mais eficiente para a resolução do Despacho Econômico de Energia Elétrica. Os algoritmos propostos são validados em problemas de teste que consideram 13 e 40 geradores térmicos e levam em consideração efeitos de ponto de válvula. Os métodos propostos superam os resultados reportados na literatura obtidos por metaheurísticas modernas, sendo capazes de encontrar o melhor valor de custo mínimo conhecido para todos os...

Research paper thumbnail of MOEA/D com Busca Local para o Flow Shop Multiobjetivo

Anais do Encontro Nacional de Inteligência Artificial e Computacional (ENIAC)

Este artigo aborda o Flow Shop de Permutação, um problema de sequenciamento presente em muitos me... more Este artigo aborda o Flow Shop de Permutação, um problema de sequenciamento presente em muitos mecanismos de gerenciamento de processos de produção industrial. A abordagem multiobjetivo considerada neste trabalho envolve a minimização do tempo máximo para completar um trabalho (makespan) e do tempo total de atraso (total tardiness). Para isso é utilizada uma plataforma multiobjetivo denominada MOEA/D-DRA (do inglês Multi-objective Evolutionary Algorithm based on Decomposition with Dynamic Resource Allocation). O foco do trabalho reside na utilização de um mecanismo muito conhecido por seus bons resultados nas versões mono-objetivo do problema. Este mecanismo, denominado NEH, é adaptado para ser utilizado na busca local incluída no MOEA/D-DRA, aplicado na solução de 11 instâncias do Flow Shop de permutação com tamanhos variando de 20 a 200 tarefas e 5 a 20 máquinas. A abordagem proposta é comparada com o MOEA/D-DRA utilizando NEH apenas na inicialização da população. Os resultados mo...

Research paper thumbnail of Predição da Estrutura de Proteínas Utilizando Algoritmo Evolutivo Adaptativo

Anais do 12. Congresso Brasileiro de Inteligência Computacional, 2015