Sara Olson - Academia.edu (original) (raw)

Papers by Sara Olson

Research paper thumbnail of A targeted genetic association study of epithelial ovarian cancer susceptibility

Oncotarget, 2016

Genome-wide association studies have identified several common susceptibility alleles for epithel... more Genome-wide association studies have identified several common susceptibility alleles for epithelial ovarian cancer (EOC). To further understand EOC susceptibility, we examined previously ungenotyped candidate variants, including uncommon variants and those residing within known susceptibility loci. At nine of eleven previously published EOC susceptibility regions (2q31, 3q25, 5p15, 8q21, 8q24, 10p12, 17q12, 17q21.31, and 19p13), novel variants were identified that were more strongly associated with risk than previously reported variants. Beyond known susceptibility regions, no variants were found to be associated with EOC risk at genome-wide statistical significance (p <5x10-8), nor were any significant after Bonferroni correction for 17,000 variants (p< 3x10-6). A customized genotyping array was used to assess over 17,000 variants in coding, non-coding, regulatory, and known susceptibility regions in 4,973 EOC cases and 5,640 controls from 13 independent studies. Susceptibil...

Research paper thumbnail of Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

Journal of genetics and genome research

Disruption in circadian gene expression, whether due to genetic variation or environmental factor... more Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases...

Research paper thumbnail of BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers

Journal of the National Cancer Institute, 2016

The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be ass... more The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. The K3326X variant was associated with breast (ORw = 1.28...

Research paper thumbnail of The TERT gene harbors multiple variants associated with pancreatic cancer susceptibility

International journal of cancer. Journal international du cancer, Jan 4, 2015

A small number of common susceptibility loci have been identified for pancreatic cancer, one of w... more A small number of common susceptibility loci have been identified for pancreatic cancer, one of which is marked by rs401681 in the TERT - CLPTM1L gene region on chr5p15.33. Since this region is characterized by low linkage disequilibrium (LD), we sought to identify additional SNPs could be related to pancreatic cancer risk, independently of rs401681. We performed an in-depth analysis of genetic variability of the telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC) genes, in 5,550 subjects with pancreatic cancer and 7,585 controls from the PANcreatic Disease ReseArch (PANDoRA) and the PanScan consortia.We identified a significant association between a variant in TERT and pancreatic cancer risk (rs2853677, OR=0.85; 95% CI=0.80-0.90, P=8.3x10(-8) ). Additional analysis adjusting rs2853677 for rs401681 indicated that the two SNPs are independently associated with pancreatic cancer risk, as suggested by the low LD between them (r(2) =0.07, D'=0.28). Three ...

Research paper thumbnail of Characterization of large structural genetic mosaicism in human autosomes

American journal of human genetics, Jan 5, 2015

Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosai... more Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large…

Research paper thumbnail of Germline mutations in shelterin complex genes are associated with familial glioma

Journal of the National Cancer Institute, 2015

Gliomas are the most common brain tumor, with several histological subtypes of various malignancy... more Gliomas are the most common brain tumor, with several histological subtypes of various malignancy grade. The genetic contribution to familial glioma is not well understood. Using whole exome sequencing of 90 individuals from 55 families, we identified two families with mutations in POT1 (p.G95C, p.E450X), a member of the telomere shelterin complex, shared by both affected individuals in each family and predicted to impact DNA binding and TPP1 binding, respectively. Validation in a separate cohort of 264 individuals from 246 families identified an additional mutation in POT1 (p.D617Efs), also predicted to disrupt TPP1 binding. All families with POT1 mutations had affected members with oligodendroglioma, a specific subtype of glioma more sensitive to irradiation. These findings are important for understanding the origin of glioma and could have importance for the future diagnostics and treatment of glioma.

Research paper thumbnail of Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study

Gynecologic Oncology, 2014

Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its hig... more Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its high-penetrance susceptibility genes and GWAS-identified variants to date are known to be involved in hormonal pathways. Given the hypothesized etiologic role of gonadotropins, an assessment of how variability in genes involved in the gonadotropin signaling pathway impacts disease risk is warranted. Genetic data from 41 ovarian cancer study sites were pooled and unconditional logistic regression was used to evaluate whether any of the 2185 SNPs from 11 gonadotropin signaling pathway genes was associated with ovarian cancer risk. A burden test using the admixture likelihood (AML) method was also used to evaluate gene-level associations. We did not find any genome-wide significant associations between individual SNPs and ovarian cancer risk. However, there was some suggestion of gene-level associations for four gonadotropin signaling pathway genes: INHBB (p=0.045, mucinous), LHCGR (p=0.046, high-grade serous), GNRH (p=0.041, high-grade serous), and FSHB (p=0.036, overall invasive). There was also suggestive evidence for INHA (p=0.060, overall invasive). Ovarian cancer studies have limited sample numbers, thus fewer genome-wide susceptibility alleles, with only modest associations, have been identified relative to breast and prostate cancers. We have evaluated the majority of ovarian cancer studies with biological samples, to our knowledge, leaving no opportunity for replication. Using both our understanding of biology and powerful gene-level tests, we have identified four putative ovarian cancer loci near INHBB, LHCGR, GNRH, and FSHB that warrant a second look if larger sample sizes and denser genotype chips become available.

Research paper thumbnail of Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

Neuro-Oncology, 2014

Background. Although familial susceptibility to glioma is known, the genetic basis for this susce... more Background. Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers.

Research paper thumbnail of GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

Nature Genetics, 2013

Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ov... more Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.

Research paper thumbnail of Aspirin, Nonaspirin Nonsteroidal Anti-inflammatory Drug, and Acetaminophen Use and Risk of Invasive Epithelial Ovarian Cancer: A Pooled Analysis in the Ovarian Cancer Association Consortium

JNCI Journal of the National Cancer Institute, 2014

Research paper thumbnail of A genome-wide association study identifies multiple loci associated with mathematics ability and disability

Genes, Brain and Behavior, 2010

Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its... more Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its etiology is relatively poorly understood, quantitative genetic research has demonstrated mathematical ability to be moderately heritable. In this first genome-wide association study (GWAS) of mathematical ability and disability, 10 out of 43 single nucleotide polymorphism (SNP) associations nominated from two high- vs. low-ability (n = 600 10-year-olds each) scans of pooled DNA were validated (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) in an individually genotyped sample of (*)2356 individuals spanning the entire distribution of mathematical ability, as assessed by teacher reports and online tests. Although the effects are of the modest sizes now expected for complex traits and require further replication, interesting candidate genes are implicated such as NRCAM which encodes a neuronal cell adhesion molecule. When combined into a set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and 1881; P = 7.277e-14) of the phenotypic variance. The association is linear across the distribution consistent with a quantitative trait locus (QTL) hypothesis; the third of children in our sample who harbour 10 or more of the 20 risk alleles identified are nearly twice as likely (OR = 1.96; df = 1; P = 3.696e-07) to be in the lowest performing 15% of the distribution. Our results correspond with those of quantitative genetic research in indicating that mathematical ability and disability are influenced by many genes generating small effects across the entire spectrum of ability, implying that more highly powered studies will be needed to detect and replicate these QTL associations.

Research paper thumbnail of Variation in NF- B Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer

Cancer Epidemiology Biomarkers & Prevention, 2014

Survival in epithelial ovarian cancer (EOC) is influenced by the host immune response, yet the ke... more Survival in epithelial ovarian cancer (EOC) is influenced by the host immune response, yet the key genetic determinants of inflammation and immunity that affect prognosis are not known. The nuclear factor-kB (NF-kB) transcription factor family plays an important role in many immune and inflammatory responses, including the response to cancer. We studied common inherited variation in 210 genes in the NF-kB family in 10,084 patients with invasive EOC (5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous) from the Ovarian Cancer Association Consortium. Associations between genotype and overall survival were assessed using Cox regression for all patients and by major histology, adjusting for known prognostic factors and correcting for multiple testing (threshold for statistical significance, P < 2.5 Â 10 À5 ). Results were statistically significant when assessed for patients of a single histology. Key associations were with caspase recruitment domain family, member 11 (CARD11) rs41324349 in patients with mucinous EOC [HR, 1.82; 95% confidence interval (CI), 1.41-2.35; P ¼ 4.13 Â 10 À6 ] and tumor necrosis factor receptor superfamily, member 13B (TNFRSF13B) rs7501462 in patients with endometrioid EOC (HR, 0.68; 95% CI, 0.56-0.82; P ¼ 2.33 Â 10 À5 ). Other associations of note included TNF receptor-associated factor 2 (TRAF2) rs17250239 in patients with high-grade serous EOC (HR, 0.84; 95% CI, 0.77-0.92; P ¼ 6.49 Â 10 À5 ) and phospholipase C, gamma 1 (PLCG1) rs11696662 in patients with clear cell EOC (HR, 0.43; 95% CI, 0.26-0.73; P ¼ 4.56 Â 10 À4 ). These associations highlight the potential importance of genes associated with host inflammation and immunity in modulating clinical outcomes in distinct EOC histologies. Cancer Epidemiol Biomarkers Prev; 23 ; 1421-7. Ó2014 AACR.

Research paper thumbnail of Resources for the comprehensive discovery of functional RNA elements

Research paper thumbnail of Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila

Genome Research, 2015

In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of ... more In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity purified 20 distinct RNA binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;high occupancy target&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery as well as RNA binding and translation initiation proteins. The RNP complexes contain proteins and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultra-complex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data is consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. From the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.

Research paper thumbnail of ELIFE05198-FIGURES

Research paper thumbnail of Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus

RNA (New York, N.Y.), Jan 22, 2015

CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genet... more CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by R...

Research paper thumbnail of Assessing long-distance RNA sequence connectivity via RNA-templated DNA-DNA ligation

eLife, Jan 13, 2015

Many RNAs, including pre-mRNAs and long non-coding RNAs, can be thousands of nucleotides long and... more Many RNAs, including pre-mRNAs and long non-coding RNAs, can be thousands of nucleotides long and undergo complex post-transcriptional processing. Multiple sites of alternative splicing within a single gene exponentially increases the number of possible spliced isoforms, with most human genes currently estimated to express at least ten. To understand the mechanisms underlying these complex isoform expression patterns methods are needed that faithfully maintain long-range exon connectivity information in individual RNA molecules. Here, we describe SeqZip, a methodology that uses RNA-templated DNA-DNA ligation to retain and compress connectivity between distant sequences within single RNA molecules. Using this assay, we test proposed coordination between distant sites of alternative exon utilization in mouse Fn1 and we characterize the extraordinary exon diversity of Drosophila melanogaster Dscam1.

Research paper thumbnail of Codon optimality is a major determinant of mRNA stability

Cell, Jan 12, 2015

mRNA degradation represents a critical regulated step in gene expression. Although the major path... more mRNA degradation represents a critical regulated step in gene expression. Although the major pathways in turnover have been identified, accounting for disparate half-lives has been elusive. We show that codon optimality is one feature that contributes greatly to mRNA stability. Genome-wide RNA decay analysis revealed that stable mRNAs are enriched in codons designated optimal, whereas unstable mRNAs contain predominately non-optimal codons. Substitution of optimal codons with synonymous, non-optimal codons results in dramatic mRNA destabilization, whereas the converse substitution significantly increases stability. Further, we demonstrate that codon optimality impacts ribosome translocation, connecting the processes of translation elongation and decay through codon optimality. Finally, we show that optimal codon content accounts for the similar stabilities observed in mRNAs encoding proteins with coordinated physiological function. This work demonstrates that codon optimization exis...

Research paper thumbnail of Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation

Cell Reports, 2014

Graphical Abstract Highlights d Fly circular RNAs were annotated from >100 libraries and >10 bill... more Graphical Abstract Highlights d Fly circular RNAs were annotated from >100 libraries and >10 billion total RNA-seq reads d Circular RNA properties include strong preference for long flanking introns d Circular RNAs are strongly biased to contain coding region conserved miRNA sites d Circular RNAs dominantly accumulate in the nervous system and increase with age

Research paper thumbnail of Genome-wide Identification of Zero Nucleotide Recursive Splicing in Drosophila

Recursive splicing is a process in which large introns are removed in multiple steps by re-splici... more Recursive splicing is a process in which large introns are removed in multiple steps by re-splicing at ratchet points--5&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here we identify 197 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues and cultured cells. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, that depletion of U2AF inhibits recursive splicing, and that the sequence and function of ratchet points are evolutionarily conserved in Drosophila. Finally, we identify four recursively spliced human genes, one of which is also recursively spliced in Drosophila. Together, these results indicate that recursive splicing is commonly used in Drosophila, occurs in humans, and provides insight into the mechanisms by which some large introns are removed.

Research paper thumbnail of A targeted genetic association study of epithelial ovarian cancer susceptibility

Oncotarget, 2016

Genome-wide association studies have identified several common susceptibility alleles for epithel... more Genome-wide association studies have identified several common susceptibility alleles for epithelial ovarian cancer (EOC). To further understand EOC susceptibility, we examined previously ungenotyped candidate variants, including uncommon variants and those residing within known susceptibility loci. At nine of eleven previously published EOC susceptibility regions (2q31, 3q25, 5p15, 8q21, 8q24, 10p12, 17q12, 17q21.31, and 19p13), novel variants were identified that were more strongly associated with risk than previously reported variants. Beyond known susceptibility regions, no variants were found to be associated with EOC risk at genome-wide statistical significance (p <5x10-8), nor were any significant after Bonferroni correction for 17,000 variants (p< 3x10-6). A customized genotyping array was used to assess over 17,000 variants in coding, non-coding, regulatory, and known susceptibility regions in 4,973 EOC cases and 5,640 controls from 13 independent studies. Susceptibil...

Research paper thumbnail of Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

Journal of genetics and genome research

Disruption in circadian gene expression, whether due to genetic variation or environmental factor... more Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases...

Research paper thumbnail of BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers

Journal of the National Cancer Institute, 2016

The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be ass... more The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. The K3326X variant was associated with breast (ORw = 1.28...

Research paper thumbnail of The TERT gene harbors multiple variants associated with pancreatic cancer susceptibility

International journal of cancer. Journal international du cancer, Jan 4, 2015

A small number of common susceptibility loci have been identified for pancreatic cancer, one of w... more A small number of common susceptibility loci have been identified for pancreatic cancer, one of which is marked by rs401681 in the TERT - CLPTM1L gene region on chr5p15.33. Since this region is characterized by low linkage disequilibrium (LD), we sought to identify additional SNPs could be related to pancreatic cancer risk, independently of rs401681. We performed an in-depth analysis of genetic variability of the telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC) genes, in 5,550 subjects with pancreatic cancer and 7,585 controls from the PANcreatic Disease ReseArch (PANDoRA) and the PanScan consortia.We identified a significant association between a variant in TERT and pancreatic cancer risk (rs2853677, OR=0.85; 95% CI=0.80-0.90, P=8.3x10(-8) ). Additional analysis adjusting rs2853677 for rs401681 indicated that the two SNPs are independently associated with pancreatic cancer risk, as suggested by the low LD between them (r(2) =0.07, D'=0.28). Three ...

Research paper thumbnail of Characterization of large structural genetic mosaicism in human autosomes

American journal of human genetics, Jan 5, 2015

Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosai... more Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large…

Research paper thumbnail of Germline mutations in shelterin complex genes are associated with familial glioma

Journal of the National Cancer Institute, 2015

Gliomas are the most common brain tumor, with several histological subtypes of various malignancy... more Gliomas are the most common brain tumor, with several histological subtypes of various malignancy grade. The genetic contribution to familial glioma is not well understood. Using whole exome sequencing of 90 individuals from 55 families, we identified two families with mutations in POT1 (p.G95C, p.E450X), a member of the telomere shelterin complex, shared by both affected individuals in each family and predicted to impact DNA binding and TPP1 binding, respectively. Validation in a separate cohort of 264 individuals from 246 families identified an additional mutation in POT1 (p.D617Efs), also predicted to disrupt TPP1 binding. All families with POT1 mutations had affected members with oligodendroglioma, a specific subtype of glioma more sensitive to irradiation. These findings are important for understanding the origin of glioma and could have importance for the future diagnostics and treatment of glioma.

Research paper thumbnail of Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study

Gynecologic Oncology, 2014

Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its hig... more Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its high-penetrance susceptibility genes and GWAS-identified variants to date are known to be involved in hormonal pathways. Given the hypothesized etiologic role of gonadotropins, an assessment of how variability in genes involved in the gonadotropin signaling pathway impacts disease risk is warranted. Genetic data from 41 ovarian cancer study sites were pooled and unconditional logistic regression was used to evaluate whether any of the 2185 SNPs from 11 gonadotropin signaling pathway genes was associated with ovarian cancer risk. A burden test using the admixture likelihood (AML) method was also used to evaluate gene-level associations. We did not find any genome-wide significant associations between individual SNPs and ovarian cancer risk. However, there was some suggestion of gene-level associations for four gonadotropin signaling pathway genes: INHBB (p=0.045, mucinous), LHCGR (p=0.046, high-grade serous), GNRH (p=0.041, high-grade serous), and FSHB (p=0.036, overall invasive). There was also suggestive evidence for INHA (p=0.060, overall invasive). Ovarian cancer studies have limited sample numbers, thus fewer genome-wide susceptibility alleles, with only modest associations, have been identified relative to breast and prostate cancers. We have evaluated the majority of ovarian cancer studies with biological samples, to our knowledge, leaving no opportunity for replication. Using both our understanding of biology and powerful gene-level tests, we have identified four putative ovarian cancer loci near INHBB, LHCGR, GNRH, and FSHB that warrant a second look if larger sample sizes and denser genotype chips become available.

Research paper thumbnail of Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

Neuro-Oncology, 2014

Background. Although familial susceptibility to glioma is known, the genetic basis for this susce... more Background. Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers.

Research paper thumbnail of GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

Nature Genetics, 2013

Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ov... more Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.

Research paper thumbnail of Aspirin, Nonaspirin Nonsteroidal Anti-inflammatory Drug, and Acetaminophen Use and Risk of Invasive Epithelial Ovarian Cancer: A Pooled Analysis in the Ovarian Cancer Association Consortium

JNCI Journal of the National Cancer Institute, 2014

Research paper thumbnail of A genome-wide association study identifies multiple loci associated with mathematics ability and disability

Genes, Brain and Behavior, 2010

Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its... more Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its etiology is relatively poorly understood, quantitative genetic research has demonstrated mathematical ability to be moderately heritable. In this first genome-wide association study (GWAS) of mathematical ability and disability, 10 out of 43 single nucleotide polymorphism (SNP) associations nominated from two high- vs. low-ability (n = 600 10-year-olds each) scans of pooled DNA were validated (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) in an individually genotyped sample of (*)2356 individuals spanning the entire distribution of mathematical ability, as assessed by teacher reports and online tests. Although the effects are of the modest sizes now expected for complex traits and require further replication, interesting candidate genes are implicated such as NRCAM which encodes a neuronal cell adhesion molecule. When combined into a set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and 1881; P = 7.277e-14) of the phenotypic variance. The association is linear across the distribution consistent with a quantitative trait locus (QTL) hypothesis; the third of children in our sample who harbour 10 or more of the 20 risk alleles identified are nearly twice as likely (OR = 1.96; df = 1; P = 3.696e-07) to be in the lowest performing 15% of the distribution. Our results correspond with those of quantitative genetic research in indicating that mathematical ability and disability are influenced by many genes generating small effects across the entire spectrum of ability, implying that more highly powered studies will be needed to detect and replicate these QTL associations.

Research paper thumbnail of Variation in NF- B Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer

Cancer Epidemiology Biomarkers & Prevention, 2014

Survival in epithelial ovarian cancer (EOC) is influenced by the host immune response, yet the ke... more Survival in epithelial ovarian cancer (EOC) is influenced by the host immune response, yet the key genetic determinants of inflammation and immunity that affect prognosis are not known. The nuclear factor-kB (NF-kB) transcription factor family plays an important role in many immune and inflammatory responses, including the response to cancer. We studied common inherited variation in 210 genes in the NF-kB family in 10,084 patients with invasive EOC (5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous) from the Ovarian Cancer Association Consortium. Associations between genotype and overall survival were assessed using Cox regression for all patients and by major histology, adjusting for known prognostic factors and correcting for multiple testing (threshold for statistical significance, P < 2.5 Â 10 À5 ). Results were statistically significant when assessed for patients of a single histology. Key associations were with caspase recruitment domain family, member 11 (CARD11) rs41324349 in patients with mucinous EOC [HR, 1.82; 95% confidence interval (CI), 1.41-2.35; P ¼ 4.13 Â 10 À6 ] and tumor necrosis factor receptor superfamily, member 13B (TNFRSF13B) rs7501462 in patients with endometrioid EOC (HR, 0.68; 95% CI, 0.56-0.82; P ¼ 2.33 Â 10 À5 ). Other associations of note included TNF receptor-associated factor 2 (TRAF2) rs17250239 in patients with high-grade serous EOC (HR, 0.84; 95% CI, 0.77-0.92; P ¼ 6.49 Â 10 À5 ) and phospholipase C, gamma 1 (PLCG1) rs11696662 in patients with clear cell EOC (HR, 0.43; 95% CI, 0.26-0.73; P ¼ 4.56 Â 10 À4 ). These associations highlight the potential importance of genes associated with host inflammation and immunity in modulating clinical outcomes in distinct EOC histologies. Cancer Epidemiol Biomarkers Prev; 23 ; 1421-7. Ó2014 AACR.

Research paper thumbnail of Resources for the comprehensive discovery of functional RNA elements

Research paper thumbnail of Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila

Genome Research, 2015

In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of ... more In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity purified 20 distinct RNA binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;high occupancy target&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery as well as RNA binding and translation initiation proteins. The RNP complexes contain proteins and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultra-complex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data is consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. From the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.

Research paper thumbnail of ELIFE05198-FIGURES

Research paper thumbnail of Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus

RNA (New York, N.Y.), Jan 22, 2015

CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genet... more CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by R...

Research paper thumbnail of Assessing long-distance RNA sequence connectivity via RNA-templated DNA-DNA ligation

eLife, Jan 13, 2015

Many RNAs, including pre-mRNAs and long non-coding RNAs, can be thousands of nucleotides long and... more Many RNAs, including pre-mRNAs and long non-coding RNAs, can be thousands of nucleotides long and undergo complex post-transcriptional processing. Multiple sites of alternative splicing within a single gene exponentially increases the number of possible spliced isoforms, with most human genes currently estimated to express at least ten. To understand the mechanisms underlying these complex isoform expression patterns methods are needed that faithfully maintain long-range exon connectivity information in individual RNA molecules. Here, we describe SeqZip, a methodology that uses RNA-templated DNA-DNA ligation to retain and compress connectivity between distant sequences within single RNA molecules. Using this assay, we test proposed coordination between distant sites of alternative exon utilization in mouse Fn1 and we characterize the extraordinary exon diversity of Drosophila melanogaster Dscam1.

Research paper thumbnail of Codon optimality is a major determinant of mRNA stability

Cell, Jan 12, 2015

mRNA degradation represents a critical regulated step in gene expression. Although the major path... more mRNA degradation represents a critical regulated step in gene expression. Although the major pathways in turnover have been identified, accounting for disparate half-lives has been elusive. We show that codon optimality is one feature that contributes greatly to mRNA stability. Genome-wide RNA decay analysis revealed that stable mRNAs are enriched in codons designated optimal, whereas unstable mRNAs contain predominately non-optimal codons. Substitution of optimal codons with synonymous, non-optimal codons results in dramatic mRNA destabilization, whereas the converse substitution significantly increases stability. Further, we demonstrate that codon optimality impacts ribosome translocation, connecting the processes of translation elongation and decay through codon optimality. Finally, we show that optimal codon content accounts for the similar stabilities observed in mRNAs encoding proteins with coordinated physiological function. This work demonstrates that codon optimization exis...

Research paper thumbnail of Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation

Cell Reports, 2014

Graphical Abstract Highlights d Fly circular RNAs were annotated from >100 libraries and >10 bill... more Graphical Abstract Highlights d Fly circular RNAs were annotated from >100 libraries and >10 billion total RNA-seq reads d Circular RNA properties include strong preference for long flanking introns d Circular RNAs are strongly biased to contain coding region conserved miRNA sites d Circular RNAs dominantly accumulate in the nervous system and increase with age

Research paper thumbnail of Genome-wide Identification of Zero Nucleotide Recursive Splicing in Drosophila

Recursive splicing is a process in which large introns are removed in multiple steps by re-splici... more Recursive splicing is a process in which large introns are removed in multiple steps by re-splicing at ratchet points--5&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here we identify 197 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues and cultured cells. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, that depletion of U2AF inhibits recursive splicing, and that the sequence and function of ratchet points are evolutionarily conserved in Drosophila. Finally, we identify four recursively spliced human genes, one of which is also recursively spliced in Drosophila. Together, these results indicate that recursive splicing is commonly used in Drosophila, occurs in humans, and provides insight into the mechanisms by which some large introns are removed.