Sarah Bovenberg - Academia.edu (original) (raw)
Uploads
Papers by Sarah Bovenberg
Molecular Therapy Nucleic Acids, Jun 1, 2013
Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes... more Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc) and Renilla or Gaussia (Gluc) luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc) as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and d-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) delivered using an adeno-associated viral vector (AAV) on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB) activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.
Molecular Therapy—Nucleic Acids, 2013
Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes... more Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc) and Renilla or Gaussia (Gluc) luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc) as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and d-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) delivered using an adeno-associated viral vector (AAV) on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB) activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.
Methods in Molecular Biology, 2013
Mycoplasma contamination in mammalian cell culture is a common problem with serious consequences ... more Mycoplasma contamination in mammalian cell culture is a common problem with serious consequences on experimental data, and yet many laboratories fail to perform regular testing. In this chapter, we describe a simple and sensitive mycoplasma detection assay based on the bioluminescent properties of the Gaussia luciferase reporter.
Trends in Molecular Medicine, 2013
Malignant gliomas are one of the most lethal cancers, and despite extensive research very little ... more Malignant gliomas are one of the most lethal cancers, and despite extensive research very little progress has been made in improving prognosis. Multimodality treatment combining surgery, radiation, and chemotherapy is the current gold standard, but effective treatment remains difficult due to the invasive nature and high recurrence of gliomas. Stem cell-based therapy using neural, mesenchymal, or hematopoietic stem cells may be an alternative approach because it is tumor selective and allows targeted therapy that spares healthy brain tissue. Stem cells can be used to establish a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or oncolytic viruses. In this review, we discuss current trends and the latest developments in stem cell therapy against malignant gliomas from both the experimental laboratory and the clinic.
Analytical Chemistry, 2013
Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have sho... more Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have shown to be useful tools for simple and noninvasive monitoring of biological processes in real-time. Here, we characterize the naturally secreted Vargula luciferase as a secreted blood reporter and show that this reporter can be multiplexed with the secreted Gaussia luciferase and alkaline phosphatase for simultaneous monitoring of three different cellular processes in the same biological system. We applied this system to monitor the response of three different subsets of glioma cells to a clinically relevant chemotherapeutic agent in the same well in culture or animal in vivo. This system could be extended to any field to detect multiple processes in the same biological system and is amenable for high-throughput screening to find drugs that affect multiple cellular populations/phenomena simultaneously.
Analytical Chemistry, 2012
Secreted Gaussia luciferase (Gluc) has been shown to be a useful tool for ex vivo monitoring of i... more Secreted Gaussia luciferase (Gluc) has been shown to be a useful tool for ex vivo monitoring of in vivo biological processes. The Gluc level in the blood was used to detect tumor growth, metastasis and response to therapy, gene transfer, and circulating cells viability, as well as transcription factors activation, complementing in vivo bioluminescence imaging. The sensitivity of the Gluc blood assay is limited due to the absorption of blue light by pigmented molecules such as hemoglobin, resulting in quenching of the signal and therefore lower sensitivity. To overcome this problem, we designed an alternative microtiter well-based binding assay in which Gluc is captured first from blood using a specific antibody followed by the addition of coelenterazine and signal acquisition using a luminometer. This assay showed to be over 1 order of magnitude more sensitive in detecting Gluc in the blood as compared to the direct Gluc blood assay enhancing ex vivo monitoring of biological processes.
Analytical Chemistry, 2012
Mycoplasma contamination in mammalian cell cultures is often overlooked yet is a serious issue wh... more Mycoplasma contamination in mammalian cell cultures is often overlooked yet is a serious issue which can induce a myriad of cellular changes leading to false interpretation of experimental results. Here we present a simple and sensitive assay to monitor mycoplasma contamination (mycosensor) based on degradation of the Gaussia luciferase reporter in the conditioned medium of cells. This assay proved to be more sensitive as compared to a commercially-available bioluminescent assay in detecting mycoplasma contamination in seven different cell lines. The Gaussia luciferase mycosensor assay provides an easy tool to monitor mammalian cells contaminants in a high-throughput fashion.
Analytical Chemistry, 2013
Gaussia Luciferase (Gluc) has proven to be a powerful mammalian cell reporter for monitoring nume... more Gaussia Luciferase (Gluc) has proven to be a powerful mammalian cell reporter for monitoring numerous biological processes in immunology, virology, oncology, and neuroscience. Current limitations of Gluc as a reporter include its emission of blue light, which is absorbed by mammalian tissues, limiting its use in vivo, and a flash-type bioluminescence reaction, making it unsuited for high-throughput applications. To overcome these limitations, a library of Gluc variants was generated using directed molecular evolution and screened for relative light output, a shift in emission spectrum, and glow-type light emission kinetics. Several variants with a 10−15 nm shift in their light emission peak were found. Further, a Gluc variant that catalyzes a glow-type bioluminescence reaction, suited for high-throughput applications, was also identified. These results indicate that molecular evolution could be used to modulate Gluc bioluminescence reaction characteristics.
Molecular Therapy Nucleic Acids, Jun 1, 2013
Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes... more Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc) and Renilla or Gaussia (Gluc) luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc) as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and d-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) delivered using an adeno-associated viral vector (AAV) on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB) activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.
Molecular Therapy—Nucleic Acids, 2013
Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes... more Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc) and Renilla or Gaussia (Gluc) luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc) as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and d-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) delivered using an adeno-associated viral vector (AAV) on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB) activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.
Methods in Molecular Biology, 2013
Mycoplasma contamination in mammalian cell culture is a common problem with serious consequences ... more Mycoplasma contamination in mammalian cell culture is a common problem with serious consequences on experimental data, and yet many laboratories fail to perform regular testing. In this chapter, we describe a simple and sensitive mycoplasma detection assay based on the bioluminescent properties of the Gaussia luciferase reporter.
Trends in Molecular Medicine, 2013
Malignant gliomas are one of the most lethal cancers, and despite extensive research very little ... more Malignant gliomas are one of the most lethal cancers, and despite extensive research very little progress has been made in improving prognosis. Multimodality treatment combining surgery, radiation, and chemotherapy is the current gold standard, but effective treatment remains difficult due to the invasive nature and high recurrence of gliomas. Stem cell-based therapy using neural, mesenchymal, or hematopoietic stem cells may be an alternative approach because it is tumor selective and allows targeted therapy that spares healthy brain tissue. Stem cells can be used to establish a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or oncolytic viruses. In this review, we discuss current trends and the latest developments in stem cell therapy against malignant gliomas from both the experimental laboratory and the clinic.
Analytical Chemistry, 2013
Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have sho... more Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have shown to be useful tools for simple and noninvasive monitoring of biological processes in real-time. Here, we characterize the naturally secreted Vargula luciferase as a secreted blood reporter and show that this reporter can be multiplexed with the secreted Gaussia luciferase and alkaline phosphatase for simultaneous monitoring of three different cellular processes in the same biological system. We applied this system to monitor the response of three different subsets of glioma cells to a clinically relevant chemotherapeutic agent in the same well in culture or animal in vivo. This system could be extended to any field to detect multiple processes in the same biological system and is amenable for high-throughput screening to find drugs that affect multiple cellular populations/phenomena simultaneously.
Analytical Chemistry, 2012
Secreted Gaussia luciferase (Gluc) has been shown to be a useful tool for ex vivo monitoring of i... more Secreted Gaussia luciferase (Gluc) has been shown to be a useful tool for ex vivo monitoring of in vivo biological processes. The Gluc level in the blood was used to detect tumor growth, metastasis and response to therapy, gene transfer, and circulating cells viability, as well as transcription factors activation, complementing in vivo bioluminescence imaging. The sensitivity of the Gluc blood assay is limited due to the absorption of blue light by pigmented molecules such as hemoglobin, resulting in quenching of the signal and therefore lower sensitivity. To overcome this problem, we designed an alternative microtiter well-based binding assay in which Gluc is captured first from blood using a specific antibody followed by the addition of coelenterazine and signal acquisition using a luminometer. This assay showed to be over 1 order of magnitude more sensitive in detecting Gluc in the blood as compared to the direct Gluc blood assay enhancing ex vivo monitoring of biological processes.
Analytical Chemistry, 2012
Mycoplasma contamination in mammalian cell cultures is often overlooked yet is a serious issue wh... more Mycoplasma contamination in mammalian cell cultures is often overlooked yet is a serious issue which can induce a myriad of cellular changes leading to false interpretation of experimental results. Here we present a simple and sensitive assay to monitor mycoplasma contamination (mycosensor) based on degradation of the Gaussia luciferase reporter in the conditioned medium of cells. This assay proved to be more sensitive as compared to a commercially-available bioluminescent assay in detecting mycoplasma contamination in seven different cell lines. The Gaussia luciferase mycosensor assay provides an easy tool to monitor mammalian cells contaminants in a high-throughput fashion.
Analytical Chemistry, 2013
Gaussia Luciferase (Gluc) has proven to be a powerful mammalian cell reporter for monitoring nume... more Gaussia Luciferase (Gluc) has proven to be a powerful mammalian cell reporter for monitoring numerous biological processes in immunology, virology, oncology, and neuroscience. Current limitations of Gluc as a reporter include its emission of blue light, which is absorbed by mammalian tissues, limiting its use in vivo, and a flash-type bioluminescence reaction, making it unsuited for high-throughput applications. To overcome these limitations, a library of Gluc variants was generated using directed molecular evolution and screened for relative light output, a shift in emission spectrum, and glow-type light emission kinetics. Several variants with a 10−15 nm shift in their light emission peak were found. Further, a Gluc variant that catalyzes a glow-type bioluminescence reaction, suited for high-throughput applications, was also identified. These results indicate that molecular evolution could be used to modulate Gluc bioluminescence reaction characteristics.