Sebastien Huet - Academia.edu (original) (raw)
Papers by Sebastien Huet
ABSTRACTPARP1 activity is regulated by its cofactor HPF1. The binding of HPF1 on PARP1 controls t... more ABSTRACTPARP1 activity is regulated by its cofactor HPF1. The binding of HPF1 on PARP1 controls the grafting of ADP-ribose moieties on serine residues of proteins nearby the DNA lesions, mainly PARP1 and histones. However, the impact of HPF1 on DNA repair regulated by PARP1 remains unclear. Here, we show that HPF1 controls both the number and the length of the ADP-ribose chains generated by PARP1 at DNA lesions. We demonstrate that HPF1-dependent histone ADP-ribosylation, rather than auto-modification of PARP1, triggers the rapid unfolding of the chromatin structure at the DNA damage sites and promotes the recruitment of the repair factors CHD4 and CHD7. Together with the observation that HPF1 contributes to efficient repair both by homologous recombination and non-homologous end joining, our findings highlight the key roles played by this PARP1 cofactor at early stages of the DNA damage response.
Biomedical Optics Express, 2021
The RNA export factor Mex67 is essential for the transport of mRNA through the nuclear pore compl... more The RNA export factor Mex67 is essential for the transport of mRNA through the nuclear pore complex (NPC) in yeast, but the molecular mechanism of this export process remains poorly understood. Here, we use quantitative fluorescence microscopy techniques in live budding yeast cells to investigate how Mex67 facilitates mRNA export. We show that Mex67 exhibits little interaction with mRNA in the nucleus and localizes to the NPC independently of mRNA, occupying a set of binding sites offered by FG repeats in the NPC. The ATPase Dbp5, which is thought to remove Mex67 from transcripts, does not affect the interaction of Mex67 with the NPC. Strikingly, we find that the essential function of Mex67 is spatially restricted to the NPC since a fusion of Mex67 to the nucleoporin Nup116 rescues a deletion of MEX67. Thus, Mex67 functions as a mobile nucleoporin, which receives mRNA export substrates in the central channel of the NPC to facilitate their translocation to the cytoplasm.
EMBO reports, 2018
MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pl... more MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repress...
Nucleic acids research, Jan 4, 2018
One of the first events to occur upon DNA damage is the local opening of the compact chromatin ar... more One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxatio...
eLife, Jan 22, 2016
The organization and biophysical properties of the cytosol implicitly govern molecular interactio... more The organization and biophysical properties of the cytosol implicitly govern molecular interactions within cells. However, little is known about mechanisms by which cells regulate cytosolic properties and intracellular diffusion rates. Here, we demonstrate that the intracellular environment of budding yeast undertakes a startling transition upon glucose starvation in which macromolecular mobility is dramatically restricted, reducing the movement of both chromatin in the nucleus and mRNPs in the cytoplasm. This confinement cannot be explained by an ATP decrease or the physiological drop in intracellular pH. Rather, our results suggest that the regulation of diffusional mobility is induced by a reduction in cell volume and subsequent increase in molecular crowding which severely alters the biophysical properties of the intracellular environment. A similar response can be observed in fission yeast and bacteria. This reveals a novel mechanism by which cells globally alter their properti...
International review of cell and molecular biology, 2014
Chromosome architecture plays an essential role for all nuclear functions, and its physical descr... more Chromosome architecture plays an essential role for all nuclear functions, and its physical description has attracted considerable interest over the last few years among the biophysics community. These researches at the frontiers of physics and biology have been stimulated by the demand for quantitative analysis of molecular biology experiments, which provide comprehensive data on chromosome folding, or of live cell imaging experiments that enable researchers to visualize selected chromosome loci in living or fixed cells. In this review our goal is to survey several nonmutually exclusive models that have emerged to describe the folding of DNA in the nucleus, the dynamics of proteins in the nucleoplasm, or the movements of chromosome loci. We focus on three classes of models, namely molecular crowding, fractal, and polymer models, draw comparisons, and discuss their merits and limitations in the context of chromosome structure and dynamics, or nuclear protein navigation in the nucleo...
Journal of Neuroscience, 2012
Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex foll... more Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.
Journal of Neuroscience, 2007
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons an... more Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D xy , was observed. Almost immobile SGs (D xy Ͻ 5 ϫ 10 Ϫ4 m 2 ⅐ s Ϫ1) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D xy below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D xy below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Journal of Cell Biology, 2003
The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates... more The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates melanosome binding to actin. Here we show that Rab27A and MyRIP are associated with secretory granules (SGs) in adrenal chromaffin cells and PC12 cells. Overexpression of Rab27A, GTPase-deficient Rab27A-Q78L, or MyRIP reduced secretory responses of PC12 cells. Amperometric recordings of single adrenal chromaffin cells revealed that Rab27A-Q78L and MyRIP reduced the sustained component of release. Moreover, these effects on secretion were partly suppressed by the actin-depolymerizing drug latrunculin but strengthened by jasplakinolide, which stabilizes the actin cortex. Finally, MyRIP and Rab27A-Q78L restricted the motion of SGs in the subplasmalemmal region of PC12 cells, as measured by evanescent-wave fluorescence microscopy. In contrast, the Rab27A-binding domain of MyRIP and a MyRIP construct that interacts with myosin-Va but not with actin increased the mobility of SGs. We propose t...
The EMBO Journal, 2009
The nucleus of eukaryotes is organized into functional compartments, the two most prominent being... more The nucleus of eukaryotes is organized into functional compartments, the two most prominent being heterochromatin and nucleoli. These structures are highly enriched in DNA, proteins or RNA, and thus thought to be crowded. In vitro, molecular crowding induces volume exclusion, hinders diffusion and enhances association, but whether these effects are relevant in vivo remains unclear. Here, we establish that volume exclusion and diffusive hindrance occur in dense nuclear compartments by probing the diffusive behaviour of inert fluorescent tracers in living cells. We also demonstrate that chromatin-interacting proteins remain transiently trapped in heterochromatin due to crowding induced enhanced affinity. The kinetic signatures of these crowding consequences allow us to derive a fractal model of chromatin organization, which explains why the dynamics of soluble nuclear proteins are affected independently of their size. This model further shows that the fractal architecture differs between heterochromatin and euchromatin, and predicts that chromatin proteins use different target-search strategies in the two compartments. We propose that fractal crowding is a fundamental principle of nuclear organization, particularly of heterochromatin maintenance.
Nucleic Acids Research, 2012
Nature, 2013
Mammalian genomes contain several billion base pairs of DNA which are packaged in chromatin fiber... more Mammalian genomes contain several billion base pairs of DNA which are packaged in chromatin fibers. At selected gene loci, cohesin complexes have been proposed to arrange these fibers into higher-order structures (1-7) but it is poorly understood how important this function is for determining overall chromosome architecture and how this process is regulated. Using conditional mutagenesis in the mouse, we show that depletion of the cohesin-associated protein Wapl (8, 9)
Journal of Virology, 2009
Intracellular transport and assembly of the subunits of the heterotrimeric RNA-dependent RNA poly... more Intracellular transport and assembly of the subunits of the heterotrimeric RNA-dependent RNA polymerase constitute a key component of the replication cycle of influenza virus. Recent results suggest that efficient polymerase assembly is a limiting factor in the viability of reassortant viruses. The mechanism of nuclear import and assembly of the three polymerase subunits, PB1, PB2, and PA, is still controversial, yet it is clearly of great significance in understanding the emergence of new strains with pandemic potential. In this study, we systematically investigated the interactions between the polymerase subunits and their localization in living cells by fluorescence cross-correlation spectroscopy (FCCS) and quantitative confocal microscopy. We could show that PB1 and PA form a dimer in the cytoplasm, which is imported into the nucleus separately from PB2. Once in the nucleus, the PB1/PA dimer associates with PB2 to form the trimeric polymerase. Photon-counting histogram analysis ...
Journal of Structural Biology, 2013
In contrast to cytoplasmic organelles, which are usually separated from the rest of the cell by p... more In contrast to cytoplasmic organelles, which are usually separated from the rest of the cell by phospholipid membranes, nuclear compartments are readily accessible to diffusing proteins and must rely on different mechanisms to maintain their integrity. Specific interactions between scaffolding proteins are known to have important roles for the formation and maintenance of nuclear structures. General physical mechanisms such as molecular crowding, phase separation or colloidal behavior have also been suggested, but their physiological significance remains uncertain. For macromolecular crowding, a role in the maintenance of nucleoli and promyelocytic leukemia (PML) nuclear bodies has been shown. Here, we tested whether a modulation of the compaction state of chromatin, which directly influences the local crowding state, has an impact on the formation and maintenance of densely packed heterochromatin. By osmotic perturbations, we could modify the packing state of chromatin in a controlled manner and show that chromatin compaction, which is associated with increased crowding conditions, is not, per se, sufficient to initiate the formation of new bona fide heterochromatin structures nor is it necessary to maintain already established heterochromatin domains. In consequence, if an increase in crowding induced by chromatin compaction maybe an early step in heterochromatin formation, specific protein-protein interactions are nevertheless required to make heterochromatin long lasting and independent of the crowding state.
European Biophysics Journal, 2007
Biophysical Journal, 2008
In endocrine cells, plasma membrane (PM)-bound secretory granules must undergo a number of matura... more In endocrine cells, plasma membrane (PM)-bound secretory granules must undergo a number of maturation stages (i.e., priming) to become fusion-competent. Despite identification of several molecules involved in binding granules to the PM and priming them, the exact nature of events occurring at the PM still largely remains a mystery. In stimulated BON cells, we used evanescent wave microscopy to study trajectories of granules shortly before their exocytoses, which provided a physical description of vesicle-PM interactions at an unprecedented level of detail, and directly lead to an original mechanistic model. In these cells, tethered (T), nonfusogenic, vesicles are prevented from converting to fusogenic, docked (D) ones in resting conditions. Upon elevation of calcium, T-vesicles perform a 21-nm step toward the PM to become D, and fuse ;3 s thereafter. Our ability to directly visualize different modes of PM-attachment paves the way for clarifying the exact role of various molecules implicated in attachment and priming of granules in future studies.
Biophysical Journal, 2006
Analysis of trajectories of dynamical biological objects, such as breeding ants or cell organelle... more Analysis of trajectories of dynamical biological objects, such as breeding ants or cell organelles, is essential to reveal the interactions they develop with their environments. Many previous works used a global characterization based on parameters calculated for entire trajectories. In cases where transient behavior was detected, this usually concerned only a particular type, such as confinement or directed motion. However, these approaches are not appropriate in situations in which the tracked objects may display many different types of transient motion. We have developed a method to exhaustively analyze different kinds of transient behavior that the tracked objects may exhibit. The method discriminates stalled periods, constrained and directed motions from random dynamics by evaluating the diffusion coefficient, the mean-square displacement curvature, and the trajectory asymmetry along individual trajectories. To detect transient motions of various durations, these parameters are calculated along trajectories using a rolling analysis window whose width is variable. The method was applied to the study of secretory vesicle dynamics in the subplasmalemmal region of human carcinoid BON cells. Analysis of transitions between transient motion periods, combined with plausible assumptions about the origin of each motion type, leads to a model of dynamical subplasmalemmal organization.
ABSTRACTPARP1 activity is regulated by its cofactor HPF1. The binding of HPF1 on PARP1 controls t... more ABSTRACTPARP1 activity is regulated by its cofactor HPF1. The binding of HPF1 on PARP1 controls the grafting of ADP-ribose moieties on serine residues of proteins nearby the DNA lesions, mainly PARP1 and histones. However, the impact of HPF1 on DNA repair regulated by PARP1 remains unclear. Here, we show that HPF1 controls both the number and the length of the ADP-ribose chains generated by PARP1 at DNA lesions. We demonstrate that HPF1-dependent histone ADP-ribosylation, rather than auto-modification of PARP1, triggers the rapid unfolding of the chromatin structure at the DNA damage sites and promotes the recruitment of the repair factors CHD4 and CHD7. Together with the observation that HPF1 contributes to efficient repair both by homologous recombination and non-homologous end joining, our findings highlight the key roles played by this PARP1 cofactor at early stages of the DNA damage response.
Biomedical Optics Express, 2021
The RNA export factor Mex67 is essential for the transport of mRNA through the nuclear pore compl... more The RNA export factor Mex67 is essential for the transport of mRNA through the nuclear pore complex (NPC) in yeast, but the molecular mechanism of this export process remains poorly understood. Here, we use quantitative fluorescence microscopy techniques in live budding yeast cells to investigate how Mex67 facilitates mRNA export. We show that Mex67 exhibits little interaction with mRNA in the nucleus and localizes to the NPC independently of mRNA, occupying a set of binding sites offered by FG repeats in the NPC. The ATPase Dbp5, which is thought to remove Mex67 from transcripts, does not affect the interaction of Mex67 with the NPC. Strikingly, we find that the essential function of Mex67 is spatially restricted to the NPC since a fusion of Mex67 to the nucleoporin Nup116 rescues a deletion of MEX67. Thus, Mex67 functions as a mobile nucleoporin, which receives mRNA export substrates in the central channel of the NPC to facilitate their translocation to the cytoplasm.
EMBO reports, 2018
MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pl... more MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repress...
Nucleic acids research, Jan 4, 2018
One of the first events to occur upon DNA damage is the local opening of the compact chromatin ar... more One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxatio...
eLife, Jan 22, 2016
The organization and biophysical properties of the cytosol implicitly govern molecular interactio... more The organization and biophysical properties of the cytosol implicitly govern molecular interactions within cells. However, little is known about mechanisms by which cells regulate cytosolic properties and intracellular diffusion rates. Here, we demonstrate that the intracellular environment of budding yeast undertakes a startling transition upon glucose starvation in which macromolecular mobility is dramatically restricted, reducing the movement of both chromatin in the nucleus and mRNPs in the cytoplasm. This confinement cannot be explained by an ATP decrease or the physiological drop in intracellular pH. Rather, our results suggest that the regulation of diffusional mobility is induced by a reduction in cell volume and subsequent increase in molecular crowding which severely alters the biophysical properties of the intracellular environment. A similar response can be observed in fission yeast and bacteria. This reveals a novel mechanism by which cells globally alter their properti...
International review of cell and molecular biology, 2014
Chromosome architecture plays an essential role for all nuclear functions, and its physical descr... more Chromosome architecture plays an essential role for all nuclear functions, and its physical description has attracted considerable interest over the last few years among the biophysics community. These researches at the frontiers of physics and biology have been stimulated by the demand for quantitative analysis of molecular biology experiments, which provide comprehensive data on chromosome folding, or of live cell imaging experiments that enable researchers to visualize selected chromosome loci in living or fixed cells. In this review our goal is to survey several nonmutually exclusive models that have emerged to describe the folding of DNA in the nucleus, the dynamics of proteins in the nucleoplasm, or the movements of chromosome loci. We focus on three classes of models, namely molecular crowding, fractal, and polymer models, draw comparisons, and discuss their merits and limitations in the context of chromosome structure and dynamics, or nuclear protein navigation in the nucleo...
Journal of Neuroscience, 2012
Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex foll... more Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.
Journal of Neuroscience, 2007
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons an... more Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D xy , was observed. Almost immobile SGs (D xy Ͻ 5 ϫ 10 Ϫ4 m 2 ⅐ s Ϫ1) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D xy below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D xy below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Journal of Cell Biology, 2003
The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates... more The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates melanosome binding to actin. Here we show that Rab27A and MyRIP are associated with secretory granules (SGs) in adrenal chromaffin cells and PC12 cells. Overexpression of Rab27A, GTPase-deficient Rab27A-Q78L, or MyRIP reduced secretory responses of PC12 cells. Amperometric recordings of single adrenal chromaffin cells revealed that Rab27A-Q78L and MyRIP reduced the sustained component of release. Moreover, these effects on secretion were partly suppressed by the actin-depolymerizing drug latrunculin but strengthened by jasplakinolide, which stabilizes the actin cortex. Finally, MyRIP and Rab27A-Q78L restricted the motion of SGs in the subplasmalemmal region of PC12 cells, as measured by evanescent-wave fluorescence microscopy. In contrast, the Rab27A-binding domain of MyRIP and a MyRIP construct that interacts with myosin-Va but not with actin increased the mobility of SGs. We propose t...
The EMBO Journal, 2009
The nucleus of eukaryotes is organized into functional compartments, the two most prominent being... more The nucleus of eukaryotes is organized into functional compartments, the two most prominent being heterochromatin and nucleoli. These structures are highly enriched in DNA, proteins or RNA, and thus thought to be crowded. In vitro, molecular crowding induces volume exclusion, hinders diffusion and enhances association, but whether these effects are relevant in vivo remains unclear. Here, we establish that volume exclusion and diffusive hindrance occur in dense nuclear compartments by probing the diffusive behaviour of inert fluorescent tracers in living cells. We also demonstrate that chromatin-interacting proteins remain transiently trapped in heterochromatin due to crowding induced enhanced affinity. The kinetic signatures of these crowding consequences allow us to derive a fractal model of chromatin organization, which explains why the dynamics of soluble nuclear proteins are affected independently of their size. This model further shows that the fractal architecture differs between heterochromatin and euchromatin, and predicts that chromatin proteins use different target-search strategies in the two compartments. We propose that fractal crowding is a fundamental principle of nuclear organization, particularly of heterochromatin maintenance.
Nucleic Acids Research, 2012
Nature, 2013
Mammalian genomes contain several billion base pairs of DNA which are packaged in chromatin fiber... more Mammalian genomes contain several billion base pairs of DNA which are packaged in chromatin fibers. At selected gene loci, cohesin complexes have been proposed to arrange these fibers into higher-order structures (1-7) but it is poorly understood how important this function is for determining overall chromosome architecture and how this process is regulated. Using conditional mutagenesis in the mouse, we show that depletion of the cohesin-associated protein Wapl (8, 9)
Journal of Virology, 2009
Intracellular transport and assembly of the subunits of the heterotrimeric RNA-dependent RNA poly... more Intracellular transport and assembly of the subunits of the heterotrimeric RNA-dependent RNA polymerase constitute a key component of the replication cycle of influenza virus. Recent results suggest that efficient polymerase assembly is a limiting factor in the viability of reassortant viruses. The mechanism of nuclear import and assembly of the three polymerase subunits, PB1, PB2, and PA, is still controversial, yet it is clearly of great significance in understanding the emergence of new strains with pandemic potential. In this study, we systematically investigated the interactions between the polymerase subunits and their localization in living cells by fluorescence cross-correlation spectroscopy (FCCS) and quantitative confocal microscopy. We could show that PB1 and PA form a dimer in the cytoplasm, which is imported into the nucleus separately from PB2. Once in the nucleus, the PB1/PA dimer associates with PB2 to form the trimeric polymerase. Photon-counting histogram analysis ...
Journal of Structural Biology, 2013
In contrast to cytoplasmic organelles, which are usually separated from the rest of the cell by p... more In contrast to cytoplasmic organelles, which are usually separated from the rest of the cell by phospholipid membranes, nuclear compartments are readily accessible to diffusing proteins and must rely on different mechanisms to maintain their integrity. Specific interactions between scaffolding proteins are known to have important roles for the formation and maintenance of nuclear structures. General physical mechanisms such as molecular crowding, phase separation or colloidal behavior have also been suggested, but their physiological significance remains uncertain. For macromolecular crowding, a role in the maintenance of nucleoli and promyelocytic leukemia (PML) nuclear bodies has been shown. Here, we tested whether a modulation of the compaction state of chromatin, which directly influences the local crowding state, has an impact on the formation and maintenance of densely packed heterochromatin. By osmotic perturbations, we could modify the packing state of chromatin in a controlled manner and show that chromatin compaction, which is associated with increased crowding conditions, is not, per se, sufficient to initiate the formation of new bona fide heterochromatin structures nor is it necessary to maintain already established heterochromatin domains. In consequence, if an increase in crowding induced by chromatin compaction maybe an early step in heterochromatin formation, specific protein-protein interactions are nevertheless required to make heterochromatin long lasting and independent of the crowding state.
European Biophysics Journal, 2007
Biophysical Journal, 2008
In endocrine cells, plasma membrane (PM)-bound secretory granules must undergo a number of matura... more In endocrine cells, plasma membrane (PM)-bound secretory granules must undergo a number of maturation stages (i.e., priming) to become fusion-competent. Despite identification of several molecules involved in binding granules to the PM and priming them, the exact nature of events occurring at the PM still largely remains a mystery. In stimulated BON cells, we used evanescent wave microscopy to study trajectories of granules shortly before their exocytoses, which provided a physical description of vesicle-PM interactions at an unprecedented level of detail, and directly lead to an original mechanistic model. In these cells, tethered (T), nonfusogenic, vesicles are prevented from converting to fusogenic, docked (D) ones in resting conditions. Upon elevation of calcium, T-vesicles perform a 21-nm step toward the PM to become D, and fuse ;3 s thereafter. Our ability to directly visualize different modes of PM-attachment paves the way for clarifying the exact role of various molecules implicated in attachment and priming of granules in future studies.
Biophysical Journal, 2006
Analysis of trajectories of dynamical biological objects, such as breeding ants or cell organelle... more Analysis of trajectories of dynamical biological objects, such as breeding ants or cell organelles, is essential to reveal the interactions they develop with their environments. Many previous works used a global characterization based on parameters calculated for entire trajectories. In cases where transient behavior was detected, this usually concerned only a particular type, such as confinement or directed motion. However, these approaches are not appropriate in situations in which the tracked objects may display many different types of transient motion. We have developed a method to exhaustively analyze different kinds of transient behavior that the tracked objects may exhibit. The method discriminates stalled periods, constrained and directed motions from random dynamics by evaluating the diffusion coefficient, the mean-square displacement curvature, and the trajectory asymmetry along individual trajectories. To detect transient motions of various durations, these parameters are calculated along trajectories using a rolling analysis window whose width is variable. The method was applied to the study of secretory vesicle dynamics in the subplasmalemmal region of human carcinoid BON cells. Analysis of transitions between transient motion periods, combined with plausible assumptions about the origin of each motion type, leads to a model of dynamical subplasmalemmal organization.