Shamil Sunyaev - Academia.edu (original) (raw)
Papers by Shamil Sunyaev
Nature, 2015
Patterns of amino acid conservation have served as a tool for understanding protein evolution. Th... more Patterns of amino acid conservation have served as a tool for understanding protein evolution. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes revealed discrete cis amino acid residues that, although benign on their own, could rescue the human mutations in vivo. This approach was also applied to ab initio gene discovery to support the identification of a de novo disease driver in BTG2 that is subject to protective cis-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of cis-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity.
Nature genetics, Jan 18, 2015
Mutations create variation in the population, fuel evolution and cause genetic diseases. Current ... more Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of older fathers are not only more numerous but also occur more frequently in early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG dinucleotides and show signatures of transcription-coupled repair, whereas mutation clusters with a unique signature point to a new mutational mechanism. Mutation and recombination rates independently associate with nucleotide diversity, and regional variation in human-chimpanzee divergence is only partly explained by heterogeneity in mutation rate. Finally, we provide a genome-wide mutation rate map for medical and population genetics applications. Our results provide new insights and refine long-standing hypotheses about h...
Cell, Jan 23, 2015
How disease-associated mutations impair protein activities in the context of biological networks ... more How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to "edgetic" alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leadin...
Molekuliarnaia biologiia
Whereas the genome-era technologies have produced the sequence of complete human genome, the mode... more Whereas the genome-era technologies have produced the sequence of complete human genome, the modern post-genome technologies aim at the understanding of mechanisms of processing of genetic information and elucidation of within-species variation. Single nucleotide polymorphisms (SNPs) comprise the majority of polymorphism in the human population. Non-synonymous coding SNPs together with SNPs in regulatory regions are believed to have the highest impact on complex disease etiology, quantitative traits and response to drug treatment. PolyPhen is a computational tool for prediction of putatively functional nsSNPs with application areas such as genetics of complex disease, birth defects, identification of functional mutations in model organisms and evolutionary genetics.
Proceedings of The National Academy of Sciences, 2009
The ability to sequence cost-effectively all of the coding regions of a given individual genome i... more The ability to sequence cost-effectively all of the coding regions of a given individual genome is rapidly approaching, with the potential for whole-genome resequencing not far behind. Initiatives are currently underway to phenotype hundreds of thousands of individuals for major human traits. Here, we determine the power for de novo discovery of genes related to human traits by resequencing all
Analytical Chemistry, 2003
The characterization of proteomes by mass spectrometry is largely limited to organisms with seque... more The characterization of proteomes by mass spectrometry is largely limited to organisms with sequenced genomes. To identify proteins from organisms with unsequenced genomes, database sequences from related species must be employed for sequence-similarity protein identifications. Peptide sequence tags (Mann, 1994) have been used successfully for the identification of proteins in sequence databases using partially interpreted tandem mass spectra of tryptic peptides. We have extended the ability of sequence tag searching to the identification of proteins whose sequences are yet unknown but are homologous to known database entries. The MultiTag method presented here assigns statistical significance to matches of multiple error-tolerant sequence tags to a database entry and ranks alignments by their significance. The MultiTag approach has the distinct advantage over other sequence-similarity approaches of being able to perform sequence-similarity identifications using only very short (2-4) amino acid residue stretches of peptide sequences, rather than complete peptide sequences deduced by de novo interpretation of tandem mass spectra. This feature facilitates the identification of low abundance proteins, since noisy and low-intensity tandem mass spectra can be utilized.
Journal of Molecular Medicine-jmm, 1999
Analysis of human genetic variation can shed light on the problem of the genetic basis of complex... more Analysis of human genetic variation can shed light on the problem of the genetic basis of complex disorders. Nonsynonymous single nucleotide polymorphisms (SNPs), which affect the amino acid sequence of proteins, are believed to be the most frequent type of variation associated with the respective disease phenotype. Complete enumeration of nonsynonymous SNPs in the candidate genes will enable further association
Proteomics, 2005
The MultiTag method (Sunyaev et al., Anal. Chem. 2003 15, 1307-1315) employs multiple error-toler... more The MultiTag method (Sunyaev et al., Anal. Chem. 2003 15, 1307-1315) employs multiple error-tolerant searches with peptide sequence tags (Mann and Wilm, Anal. Chem. 1994, 66, 4390-4399) for the identification of proteins from organisms with unsequenced genomes. Here we demonstrate that the error-tolerant capabilities of MultiTag increased the number of peptide alignments and improved the confidence of identifications in an EST database. The MultiTag outperformed conventional database searching software that only utilizes stringent matching of tandem mass spectra to nucleotide sequences of ESTs.
Nature genetics, 2015
Non-African populations have experienced size reductions in the time since their split from West ... more Non-African populations have experienced size reductions in the time since their split from West Africans, leading to the hypothesis that natural selection to remove weakly deleterious mutations has been less effective in the history of non-Africans. To test this hypothesis, we measured the per-genome accumulation of nonsynonymous substitutions across diverse pairs of populations. We find no evidence for a higher load of deleterious mutations in non-Africans. However, we detect significant differences among more divergent populations, as archaic Denisovans have accumulated nonsynonymous mutations faster than either modern humans or Neanderthals. To reconcile these findings with patterns that have been interpreted as evidence of the less effective removal of deleterious mutations in non-Africans than in West Africans, we use simulations to show that the observed patterns are not likely to reflect changes in the effectiveness of selection after the populations split but are instead li...
Nature communications, 2015
Variants associated with blood lipid levels may be population-specific. To identify low-frequency... more Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.
Nature, Jan 19, 2015
Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distribut... more Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed uniformly along the human genome. Instead, different human genomic regions vary by up to fivefold in the local density of cancer somatic mutations, posing a fundamental problem for statistical methods used in cancer genomics. Epigenomic organization has been proposed as a major determinant of the cancer mutational landscape. However, both somatic mutagenesis and epigenomic features are highly cell-type-specific. We investigated the distribution of mutations in multiple independent samples of diverse cancer types and compared them to cell-type-specific epigenomic features. Here we show that chromatin accessibility and modification, together with replication timing, explain up to 86% of the variance in mutation rates along cancer genomes. The best predictors of local somatic mutation density are epigenomic features derived from the most likely cell type of origin of the corresponding ma...
We propose a method for estimating the evolutionary distance between DNA sequences in terms of in... more We propose a method for estimating the evolutionary distance between DNA sequences in terms of insertions and deletions (indels), defined as the per site number of indels accumulated in the course of divergence of the two sequences. We derive a maximal likelihood estimate of this distance from differences between lengths of orthologous introns or other segments of sequences delimited by
Nature, Jan 19, 2015
The reference human genome sequence set the stage for studies of genetic variation and its associ... more The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic info...
Molecular & Cellular Proteomics, 2004
Nature, 2005
Amino acid composition of proteins varies substantially between taxa and, thus, can evolve. For e... more Amino acid composition of proteins varies substantially between taxa and, thus, can evolve. For example, proteins from organisms with (G + C)-rich (or (A + T)-rich) genomes contain more (or fewer) amino acids encoded by (G + C)-rich codons. However, no universal trends in ongoing changes of amino acid frequencies have been reported. We compared sets of orthologous proteins encoded
Journal of Molecular Biology, 2003
Structural biology can provide three-dimensional structures for proteins of unknown function. Whe... more Structural biology can provide three-dimensional structures for proteins of unknown function. When sequence or structure comparisons fail to suggest a function, insights can come from discovery of functionally important local structural patterns. Existing methods to detect such patterns lack rigorous statistics needed for widespread application. Here, we derive a formula to calculate statistical significance of the root-mean-square deviation between atoms
Proceedings of The National Academy of Sciences, 2002
We study fitness landscape in the space of protein sequences by relating sets of human pathogenic... more We study fitness landscape in the space of protein sequences by relating sets of human pathogenic missense mutations in 32 proteins to amino acid substitutions that occurred in the course of evolution of these proteins. On average, 10% of deviations of a nonhuman protein from its human ortholog are compensated pathogenic deviations (CPDs), i.e., are caused by an amino acid
Advances in Protein Chemistry, Vol 54, 2000
INDIVIDUAL VARIATION IN PROTEIN-CODING SEQUENCES OF HUMAN GENOME SHAMIL SUNYAEV, JENS HANKE, DAVI... more INDIVIDUAL VARIATION IN PROTEIN-CODING SEQUENCES OF HUMAN GENOME SHAMIL SUNYAEV, JENS HANKE, DAVID BRETT, ATAKAN AYDIN, INGA ZASTROW, WARREN LATHE, PEER BORK, and JENS REICH Max-Delbru ck-Centrum of Molecular Medicine, ...
Nature, 2015
Patterns of amino acid conservation have served as a tool for understanding protein evolution. Th... more Patterns of amino acid conservation have served as a tool for understanding protein evolution. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes revealed discrete cis amino acid residues that, although benign on their own, could rescue the human mutations in vivo. This approach was also applied to ab initio gene discovery to support the identification of a de novo disease driver in BTG2 that is subject to protective cis-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of cis-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity.
Nature genetics, Jan 18, 2015
Mutations create variation in the population, fuel evolution and cause genetic diseases. Current ... more Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of older fathers are not only more numerous but also occur more frequently in early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG dinucleotides and show signatures of transcription-coupled repair, whereas mutation clusters with a unique signature point to a new mutational mechanism. Mutation and recombination rates independently associate with nucleotide diversity, and regional variation in human-chimpanzee divergence is only partly explained by heterogeneity in mutation rate. Finally, we provide a genome-wide mutation rate map for medical and population genetics applications. Our results provide new insights and refine long-standing hypotheses about h...
Cell, Jan 23, 2015
How disease-associated mutations impair protein activities in the context of biological networks ... more How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to "edgetic" alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leadin...
Molekuliarnaia biologiia
Whereas the genome-era technologies have produced the sequence of complete human genome, the mode... more Whereas the genome-era technologies have produced the sequence of complete human genome, the modern post-genome technologies aim at the understanding of mechanisms of processing of genetic information and elucidation of within-species variation. Single nucleotide polymorphisms (SNPs) comprise the majority of polymorphism in the human population. Non-synonymous coding SNPs together with SNPs in regulatory regions are believed to have the highest impact on complex disease etiology, quantitative traits and response to drug treatment. PolyPhen is a computational tool for prediction of putatively functional nsSNPs with application areas such as genetics of complex disease, birth defects, identification of functional mutations in model organisms and evolutionary genetics.
Proceedings of The National Academy of Sciences, 2009
The ability to sequence cost-effectively all of the coding regions of a given individual genome i... more The ability to sequence cost-effectively all of the coding regions of a given individual genome is rapidly approaching, with the potential for whole-genome resequencing not far behind. Initiatives are currently underway to phenotype hundreds of thousands of individuals for major human traits. Here, we determine the power for de novo discovery of genes related to human traits by resequencing all
Analytical Chemistry, 2003
The characterization of proteomes by mass spectrometry is largely limited to organisms with seque... more The characterization of proteomes by mass spectrometry is largely limited to organisms with sequenced genomes. To identify proteins from organisms with unsequenced genomes, database sequences from related species must be employed for sequence-similarity protein identifications. Peptide sequence tags (Mann, 1994) have been used successfully for the identification of proteins in sequence databases using partially interpreted tandem mass spectra of tryptic peptides. We have extended the ability of sequence tag searching to the identification of proteins whose sequences are yet unknown but are homologous to known database entries. The MultiTag method presented here assigns statistical significance to matches of multiple error-tolerant sequence tags to a database entry and ranks alignments by their significance. The MultiTag approach has the distinct advantage over other sequence-similarity approaches of being able to perform sequence-similarity identifications using only very short (2-4) amino acid residue stretches of peptide sequences, rather than complete peptide sequences deduced by de novo interpretation of tandem mass spectra. This feature facilitates the identification of low abundance proteins, since noisy and low-intensity tandem mass spectra can be utilized.
Journal of Molecular Medicine-jmm, 1999
Analysis of human genetic variation can shed light on the problem of the genetic basis of complex... more Analysis of human genetic variation can shed light on the problem of the genetic basis of complex disorders. Nonsynonymous single nucleotide polymorphisms (SNPs), which affect the amino acid sequence of proteins, are believed to be the most frequent type of variation associated with the respective disease phenotype. Complete enumeration of nonsynonymous SNPs in the candidate genes will enable further association
Proteomics, 2005
The MultiTag method (Sunyaev et al., Anal. Chem. 2003 15, 1307-1315) employs multiple error-toler... more The MultiTag method (Sunyaev et al., Anal. Chem. 2003 15, 1307-1315) employs multiple error-tolerant searches with peptide sequence tags (Mann and Wilm, Anal. Chem. 1994, 66, 4390-4399) for the identification of proteins from organisms with unsequenced genomes. Here we demonstrate that the error-tolerant capabilities of MultiTag increased the number of peptide alignments and improved the confidence of identifications in an EST database. The MultiTag outperformed conventional database searching software that only utilizes stringent matching of tandem mass spectra to nucleotide sequences of ESTs.
Nature genetics, 2015
Non-African populations have experienced size reductions in the time since their split from West ... more Non-African populations have experienced size reductions in the time since their split from West Africans, leading to the hypothesis that natural selection to remove weakly deleterious mutations has been less effective in the history of non-Africans. To test this hypothesis, we measured the per-genome accumulation of nonsynonymous substitutions across diverse pairs of populations. We find no evidence for a higher load of deleterious mutations in non-Africans. However, we detect significant differences among more divergent populations, as archaic Denisovans have accumulated nonsynonymous mutations faster than either modern humans or Neanderthals. To reconcile these findings with patterns that have been interpreted as evidence of the less effective removal of deleterious mutations in non-Africans than in West Africans, we use simulations to show that the observed patterns are not likely to reflect changes in the effectiveness of selection after the populations split but are instead li...
Nature communications, 2015
Variants associated with blood lipid levels may be population-specific. To identify low-frequency... more Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.
Nature, Jan 19, 2015
Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distribut... more Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed uniformly along the human genome. Instead, different human genomic regions vary by up to fivefold in the local density of cancer somatic mutations, posing a fundamental problem for statistical methods used in cancer genomics. Epigenomic organization has been proposed as a major determinant of the cancer mutational landscape. However, both somatic mutagenesis and epigenomic features are highly cell-type-specific. We investigated the distribution of mutations in multiple independent samples of diverse cancer types and compared them to cell-type-specific epigenomic features. Here we show that chromatin accessibility and modification, together with replication timing, explain up to 86% of the variance in mutation rates along cancer genomes. The best predictors of local somatic mutation density are epigenomic features derived from the most likely cell type of origin of the corresponding ma...
We propose a method for estimating the evolutionary distance between DNA sequences in terms of in... more We propose a method for estimating the evolutionary distance between DNA sequences in terms of insertions and deletions (indels), defined as the per site number of indels accumulated in the course of divergence of the two sequences. We derive a maximal likelihood estimate of this distance from differences between lengths of orthologous introns or other segments of sequences delimited by
Nature, Jan 19, 2015
The reference human genome sequence set the stage for studies of genetic variation and its associ... more The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic info...
Molecular & Cellular Proteomics, 2004
Nature, 2005
Amino acid composition of proteins varies substantially between taxa and, thus, can evolve. For e... more Amino acid composition of proteins varies substantially between taxa and, thus, can evolve. For example, proteins from organisms with (G + C)-rich (or (A + T)-rich) genomes contain more (or fewer) amino acids encoded by (G + C)-rich codons. However, no universal trends in ongoing changes of amino acid frequencies have been reported. We compared sets of orthologous proteins encoded
Journal of Molecular Biology, 2003
Structural biology can provide three-dimensional structures for proteins of unknown function. Whe... more Structural biology can provide three-dimensional structures for proteins of unknown function. When sequence or structure comparisons fail to suggest a function, insights can come from discovery of functionally important local structural patterns. Existing methods to detect such patterns lack rigorous statistics needed for widespread application. Here, we derive a formula to calculate statistical significance of the root-mean-square deviation between atoms
Proceedings of The National Academy of Sciences, 2002
We study fitness landscape in the space of protein sequences by relating sets of human pathogenic... more We study fitness landscape in the space of protein sequences by relating sets of human pathogenic missense mutations in 32 proteins to amino acid substitutions that occurred in the course of evolution of these proteins. On average, 10% of deviations of a nonhuman protein from its human ortholog are compensated pathogenic deviations (CPDs), i.e., are caused by an amino acid
Advances in Protein Chemistry, Vol 54, 2000
INDIVIDUAL VARIATION IN PROTEIN-CODING SEQUENCES OF HUMAN GENOME SHAMIL SUNYAEV, JENS HANKE, DAVI... more INDIVIDUAL VARIATION IN PROTEIN-CODING SEQUENCES OF HUMAN GENOME SHAMIL SUNYAEV, JENS HANKE, DAVID BRETT, ATAKAN AYDIN, INGA ZASTROW, WARREN LATHE, PEER BORK, and JENS REICH Max-Delbru ck-Centrum of Molecular Medicine, ...