Shaz Hoda Hoda (US - Advisory) (original) (raw)
Uploads
Papers by Shaz Hoda Hoda (US - Advisory)
ArXiv, 2022
Machine learning driven trading strategies have garnered a lot of interest over the past few year... more Machine learning driven trading strategies have garnered a lot of interest over the past few years. There is, however, limited consensus on the ideal approach for the development of such trading strategies. Further, most literature has focused on trading strategies for short-term trading, with little or no focus on strategies that attempt to build long-term wealth. Our paper proposes a new approach for developing long-term investment strategies using an ensemble of evolutionary algorithms and a deep learning model by taking a series of short-term purchase decisions. Our methodology focuses on building long-term wealth by improving systematic investment planning (SIP) decisions on Exchange Traded Funds (ETF) over a period of time. We provide empirical evidence of superior performance (around 1% higher returns) using our ensemble approach as compared to the traditional daily systematic investment practice on a given ETF. Our results are based on live trading decisions made by our algo...
2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020
The current pandemic has introduced substantial uncertainty to traditional methods for demand pla... more The current pandemic has introduced substantial uncertainty to traditional methods for demand planning. These uncertainties stem from the disease progression, government interventions, economy and consumer behavior. While most of the emerging literature on the pandemic has focused on disease progression, a few have focused on consequent regulations and their impact on individual behavior. The contributions of this paper include a quantitative behavior model of fear of COVID-19, impact of government interventions on consumer behavior, and impact of consumer behavior on consumer choice and hence demand for goods. It brings together multiple models for disease progression, consumer behavior and demand estimation-thus bridging the gap between disease progression and consumer demand. We use panel regression to understand the drivers of demand during the pandemic and Bayesian inference to simplify the regulation landscape that can help build scenarios for resilient demand planning. We ill...
ArXiv, 2022
Machine learning driven trading strategies have garnered a lot of interest over the past few year... more Machine learning driven trading strategies have garnered a lot of interest over the past few years. There is, however, limited consensus on the ideal approach for the development of such trading strategies. Further, most literature has focused on trading strategies for short-term trading, with little or no focus on strategies that attempt to build long-term wealth. Our paper proposes a new approach for developing long-term investment strategies using an ensemble of evolutionary algorithms and a deep learning model by taking a series of short-term purchase decisions. Our methodology focuses on building long-term wealth by improving systematic investment planning (SIP) decisions on Exchange Traded Funds (ETF) over a period of time. We provide empirical evidence of superior performance (around 1% higher returns) using our ensemble approach as compared to the traditional daily systematic investment practice on a given ETF. Our results are based on live trading decisions made by our algo...
2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020
The current pandemic has introduced substantial uncertainty to traditional methods for demand pla... more The current pandemic has introduced substantial uncertainty to traditional methods for demand planning. These uncertainties stem from the disease progression, government interventions, economy and consumer behavior. While most of the emerging literature on the pandemic has focused on disease progression, a few have focused on consequent regulations and their impact on individual behavior. The contributions of this paper include a quantitative behavior model of fear of COVID-19, impact of government interventions on consumer behavior, and impact of consumer behavior on consumer choice and hence demand for goods. It brings together multiple models for disease progression, consumer behavior and demand estimation-thus bridging the gap between disease progression and consumer demand. We use panel regression to understand the drivers of demand during the pandemic and Bayesian inference to simplify the regulation landscape that can help build scenarios for resilient demand planning. We ill...