Shih-che Sue - Academia.edu (original) (raw)
Papers by Shih-che Sue
Physica D: Nonlinear Phenomena, May 1, 2005
Biomedicines
Cecropins are a family of antimicrobial peptides (AMPs) that are widely found in the innate immun... more Cecropins are a family of antimicrobial peptides (AMPs) that are widely found in the innate immune system of Cecropia moths. Cecropins exhibit a broad spectrum of antimicrobial and anticancer activities. The structures of Cecropins are composed of 34–39 amino acids with an N-terminal amphipathic α-helix, an AGP hinge and a hydrophobic C-terminal α-helix. KR12AGPWR6 was designed based on the Cecropin-like structural feature. In addition to its antimicrobial activities, KR12AGPWR6 also possesses enhanced salt resistance, antiendotoxin and anticancer properties. Herein, we have developed a strategy to produce recombinant KR12AGPWR6 through a salt-sensitive, pH and temperature dependent intein self-cleavage system. The His6-Intein-KR12AGPWR6 was expressed by E. coli and KR12AGPWR6 was released by the self-cleavage of intein under optimized ionic strength, pH and temperature conditions. The molecular weight and structural feature of the recombinant KR12AGPWR6 was determined by MALDI-TOF ...
This article appeared in a journal published by Elsevier. The attached copy is furnished to the a... more This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:
This article appeared in a journal published by Elsevier. The attached copy is furnished to the a... more This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:
Methods in Enzymology, 2019
In this chapter, we propose to use salt-sensitive intein as a fusion protein to promote polypepti... more In this chapter, we propose to use salt-sensitive intein as a fusion protein to promote polypeptide expression; the removal of intein from the target sequence requires no enzyme, only a buffer change. The method will be particularly helpful for large-scale polypeptide preparations. Intein is an enzyme that can perform N- and C-terminal self-cleavage. Upon introduction of a mutation to eliminate the N-terminal cleavage activity, the C-terminal cleavage function can still be preserved. This feature was used to develop intein as a fusion protein through conjugation with a given sequence to promote protein expression in a biosynthesis system. Fused intein could later be separated from the target sequence through a C-terminal self-cleavage reaction. Here, a type of salt-sensitive intein is characterized in which ionic strength becomes an effector to control the self-cleavage activity. Low salt concentrations favor the cleavage reaction. Thus, using salt-sensitive intein as a fusion protein simply requires a buffer change to activate the self-cleavage mechanism, which makes it an enzyme-free process. This process has many advantages, including low cost, no extra residue remaining after cleavage, feasibility for preparing proteins starting from a non-Met codon and a special benefit for producing isotope-labeled peptides.
Molecular Therapy - Methods & Clinical Development, 2019
Journal of Biological Chemistry, 2001
Vaccines, 2020
Human infections with highly pathogenic avian influenza H5N1 viruses persist as a major global he... more Human infections with highly pathogenic avian influenza H5N1 viruses persist as a major global health concern. Vaccination remains the primary protective strategy against H5N1 and other novel avian influenza virus infections. We investigated the use of E. coli type IIb heat labile enterotoxin B subunit (LTIIb-B5) as a mucosal adjuvant for intranasal immunizations with recombinant HA proteins against H5N1 avian influenza viruses. Use of LTIIb-B5 adjuvant elicited more potent IgG, IgA, and neutralizing antibody titers in both sera and bronchoalveolar lavage fluids, thus increasing protection against lethal virus challenges. LTIIb-B5 mucosal adjuvanticity was found to trigger stronger Th17 cellular response in spleen lymphocytes and cervical lymph nodes. Studies of anti-IL-17A monoclonal antibody depletion and IL-17A knockout mice also suggest the contribution from Th17 cellular response to anti-H5N1 protective immunity. Our results indicate a link between improved protection against H...
Communications Biology, 2020
BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (... more BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (FLD) located on the opposite side of its ligand-binding groove. In vivo phosphorylation of the FLD enhances the affinity of BCL-2 for pro-apoptotic ligands, and consequently anti-apoptotic activity. However, it remains unknown as to how the faraway, unstructured FLD modulates the affinity. Here we investigate the protein-ligand interactions by fluorescence techniques and monitor protein dynamics by DEER and NMR spectroscopy tools. We show that phosphomimetic mutations on the FLD lead to a reduction in structural flexibility, hence promoting ligand access to the groove. The bound pro-apoptotic ligands can be displaced by the BCL-2-selective inhibitor ABT-199 efficiently, and thus released to trigger apoptosis. We show that changes in structural flexibility on an unstructured loop can activate an allosteric protein that is otherwise structurally inactive.
Journal of Molecular Biology, 2007
Journal of Biomedical Science, 2005
Journal of Biological Chemistry, 2013
Physica D: Nonlinear Phenomena, May 1, 2005
Biomedicines
Cecropins are a family of antimicrobial peptides (AMPs) that are widely found in the innate immun... more Cecropins are a family of antimicrobial peptides (AMPs) that are widely found in the innate immune system of Cecropia moths. Cecropins exhibit a broad spectrum of antimicrobial and anticancer activities. The structures of Cecropins are composed of 34–39 amino acids with an N-terminal amphipathic α-helix, an AGP hinge and a hydrophobic C-terminal α-helix. KR12AGPWR6 was designed based on the Cecropin-like structural feature. In addition to its antimicrobial activities, KR12AGPWR6 also possesses enhanced salt resistance, antiendotoxin and anticancer properties. Herein, we have developed a strategy to produce recombinant KR12AGPWR6 through a salt-sensitive, pH and temperature dependent intein self-cleavage system. The His6-Intein-KR12AGPWR6 was expressed by E. coli and KR12AGPWR6 was released by the self-cleavage of intein under optimized ionic strength, pH and temperature conditions. The molecular weight and structural feature of the recombinant KR12AGPWR6 was determined by MALDI-TOF ...
This article appeared in a journal published by Elsevier. The attached copy is furnished to the a... more This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:
This article appeared in a journal published by Elsevier. The attached copy is furnished to the a... more This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:
Methods in Enzymology, 2019
In this chapter, we propose to use salt-sensitive intein as a fusion protein to promote polypepti... more In this chapter, we propose to use salt-sensitive intein as a fusion protein to promote polypeptide expression; the removal of intein from the target sequence requires no enzyme, only a buffer change. The method will be particularly helpful for large-scale polypeptide preparations. Intein is an enzyme that can perform N- and C-terminal self-cleavage. Upon introduction of a mutation to eliminate the N-terminal cleavage activity, the C-terminal cleavage function can still be preserved. This feature was used to develop intein as a fusion protein through conjugation with a given sequence to promote protein expression in a biosynthesis system. Fused intein could later be separated from the target sequence through a C-terminal self-cleavage reaction. Here, a type of salt-sensitive intein is characterized in which ionic strength becomes an effector to control the self-cleavage activity. Low salt concentrations favor the cleavage reaction. Thus, using salt-sensitive intein as a fusion protein simply requires a buffer change to activate the self-cleavage mechanism, which makes it an enzyme-free process. This process has many advantages, including low cost, no extra residue remaining after cleavage, feasibility for preparing proteins starting from a non-Met codon and a special benefit for producing isotope-labeled peptides.
Molecular Therapy - Methods & Clinical Development, 2019
Journal of Biological Chemistry, 2001
Vaccines, 2020
Human infections with highly pathogenic avian influenza H5N1 viruses persist as a major global he... more Human infections with highly pathogenic avian influenza H5N1 viruses persist as a major global health concern. Vaccination remains the primary protective strategy against H5N1 and other novel avian influenza virus infections. We investigated the use of E. coli type IIb heat labile enterotoxin B subunit (LTIIb-B5) as a mucosal adjuvant for intranasal immunizations with recombinant HA proteins against H5N1 avian influenza viruses. Use of LTIIb-B5 adjuvant elicited more potent IgG, IgA, and neutralizing antibody titers in both sera and bronchoalveolar lavage fluids, thus increasing protection against lethal virus challenges. LTIIb-B5 mucosal adjuvanticity was found to trigger stronger Th17 cellular response in spleen lymphocytes and cervical lymph nodes. Studies of anti-IL-17A monoclonal antibody depletion and IL-17A knockout mice also suggest the contribution from Th17 cellular response to anti-H5N1 protective immunity. Our results indicate a link between improved protection against H...
Communications Biology, 2020
BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (... more BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (FLD) located on the opposite side of its ligand-binding groove. In vivo phosphorylation of the FLD enhances the affinity of BCL-2 for pro-apoptotic ligands, and consequently anti-apoptotic activity. However, it remains unknown as to how the faraway, unstructured FLD modulates the affinity. Here we investigate the protein-ligand interactions by fluorescence techniques and monitor protein dynamics by DEER and NMR spectroscopy tools. We show that phosphomimetic mutations on the FLD lead to a reduction in structural flexibility, hence promoting ligand access to the groove. The bound pro-apoptotic ligands can be displaced by the BCL-2-selective inhibitor ABT-199 efficiently, and thus released to trigger apoptosis. We show that changes in structural flexibility on an unstructured loop can activate an allosteric protein that is otherwise structurally inactive.
Journal of Molecular Biology, 2007
Journal of Biomedical Science, 2005
Journal of Biological Chemistry, 2013