Shiraz Mujtaba - Academia.edu (original) (raw)
Papers by Shiraz Mujtaba
Epigenetic Mechanisms in Bacteria Bridge Physiology, Growth and Host–Pathogen Interactions
Handbook of Epigenetics
Inhibiteurs de bromodomaines comme modulateurs d'expression génique
L'invention concerne d'une maniere generale des composes et des compositions comprenant u... more L'invention concerne d'une maniere generale des composes et des compositions comprenant un ou plusieurs analogues de diphenylethylene, diphenylethylyne, et d'azobenzene. Ces composes sont utilises pour traiter des maladies associees a l'activite de NF-kB et de p53, telles que le cancer et les maladies inflammatoires.
Procédé de suppression d’une transcription de gène par méthylation d’histone lysine
L’invention concerne des procedes de suppression de l’expression transcriptionnelle d’un ou plusi... more L’invention concerne des procedes de suppression de l’expression transcriptionnelle d’un ou plusieurs genes par methylation des proteines de chromatine histone du ou des genes. Specifiquement, une methyltransferase d’histone lysine de domaine viral SET (proteine vSET ou de type vSET) methyle la lysine 27 d’une proteine 3 d’histone de gene (H3-K27) supprimant ainsi la transcription du gene.
Biomolecules, 2021
The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the t... more The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the transcriptional programming and biological outcomes of downstream genes. An array of epigenetic modifications plays a pivotal role in shaping the chromatin architecture, which controls DNA access to the transcriptional machinery. Acetylation of the amino acid lysine is a widespread epigenetic modification that serves as a marker for gene activation, which intertwines the maintenance of cellular homeostasis and the regulation of signaling during stress. The biochemical horizon of acetylation ranges from orchestrating the stability and cellular localization of proteins that engage in the cell cycle to DNA repair and metabolism. Furthermore, lysine acetyltransferases (KATs) modulate the functions of transcription factors that govern cellular response to microbial infections, genotoxic stress, and inflammation. Due to their central role in many biological processes, mutations in KATs cause de...
Molecules (Basel, Switzerland), Jan 2, 2018
Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the s... more Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the side-effects from anticancer therapies. Thus, small molecules with potential to downregulate the activation of p53 could minimize pathology emerging from anticancer therapies. Acetylation of p53 by the histone acetyltransferase (HAT) domain is the hallmark of coactivator CREB-binding protein (CBP) epigenetic function. During genotoxic stress, CBP HAT-mediated acetylation is essential for the activation of p53 to transcriptionally govern target genes, which control cellular responses. Here, we present a small molecule, NiCur, which blocks CBP HAT activity and downregulates p53 activation upon genotoxic stress. Computational modeling reveals that NiCur docks into the active site of CBP HAT. On promoter, the recruitment of p53 as well as RNA Polymerase II and levels of acetylation on histone H3 were diminished by NiCur. Specifically, NiCur reduces the levels of acetylation at lysine 27 on hi...
The following versions of software and data (see references i O) were used in the production of t... more The following versions of software and data (see references i O) were used in the production of this report:
NMR Structure of CBP Bromodomain in complex with p53 peptide
complex structure of PCAF bromodomain with small chemical ligand NP1
Method of Suppressing Gene Transcription Through Histone Lysine Methylation
Solution NMR structures of CBP bromodomain with small molecule of HBS
Annals of the New York Academy of Sciences, Jul 25, 2016
Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain-mediated lysine methylation, one of the maj... more Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain-mediated lysine methylation, one of the major epigenetic marks, has been found to regulate chromatin-mediated gene transcription. Published studies have established further that methylation is not restricted to nuclear proteins but is involved in many cellular processes, including growth, differentiation, immune regulation, and cancer progression. The biological complexity of lysine methylation emerges from its capacity to cause gene activation or gene repression owing to the specific position of methylated-lysine moieties on the chromatin. Accumulating evidence suggests that despite the absence of chromatin, viruses and prokaryotes also express SET proteins, although their functional roles remain relatively less investigated. One possibility could be that SET proteins in lower organisms have more than one biological function, for example, in regulating growth or in manipulating host transcription machinery in order to establish ...
Cancers, 2015
The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular res... more The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre-and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to-independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.
Proceedings of the National Academy of Sciences of the United States of America, Jan 16, 2014
Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastas... more Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyro...
Proceedings of the National Academy of Sciences of the United States of America, Jan 16, 2014
A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are ... more A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are driven by the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Having shown that bisphosphonates, a class of drugs used widely for the therapy of osteoporosis and metastatic bone disease, reduce cancer cell viability by targeting HER1, we explored their potential utility in the prevention and therapy of HER-driven cancers. We show that bisphosphonates inhibit colony formation by HER1(ΔE746-A750)-driven HCC827 NSCLCs and HER1(wt)-expressing MB231 triple negative breast cancers, but not by HER(low)-SW620 colon cancers. In parallel, oral gavage with bisphosphonates of mice xenografted with HCC827 or MB231 cells led to a significant reduction in tumor volume in both treatment and prevention protocols. This result was not seen with mice harboring HER(low) SW620 xenografts. We next explored whether bisphosphonates can serve as adjunctive therapies to tyrosine k...
Proteins: Structure, Function, and Bioinformatics, 2014
The fibroblast growth factor substrate 2 (FRS2) family proteins function as scaffolding adapters ... more The fibroblast growth factor substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding domain (PTB) and transfer signals from the activated receptors to downstream effector proteins. Here, we report the NMR structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain.
PLoS ONE, 2010
A hallmark of p53 function is to regulate a transcriptional program in response to extracellular ... more A hallmark of p53 function is to regulate a transcriptional program in response to extracellular and intracellular stress that directs cell cycle arrest, apoptosis, and cellular senescence. Independent of the role of p53 in the nucleus, some of the antiproliferative functions of p53 reside within the mitochondria [1]. p53 can arrest cell growth in response to mitochondrial p53 in an EJ bladder carcinoma cell environment that is naïve of p53 function until induced to express p53 [2]. TP53 can independently partition with endogenous nuclear and mitochondrial proteins consistent with the ability of p53 to enact senescence. In order to address the role of p53 in navigating cellular senescence through the mitochondria, we identified SirT3 to rescue EJ/p53 cells from induced p53-mediated growth arrest. Human SirT3 function appears coupled with p53 early during the initiation of p53 expression in the mitochondria by biochemical and cellular localization analysis. Our evidence suggests that SirT3 partially abrogates p53 activity to enact growth arrest and senescence. Additionally, we identified the chaperone protein BAG-2 in averting SirT3 targeting of p53-mediated senescence. These studies identify a complex relationship between p53, SirT3, and chaperoning factor BAG-2 that may link the salvaging and quality assurance of the p53 protein for control of cellular fate independent of transcriptional activity.
Oncogene, 2007
Histone lysine acetylation is central to epigenetic control of gene transcription. The bromodomai... more Histone lysine acetylation is central to epigenetic control of gene transcription. The bromodomain, found in chromatin-associated proteins and histone acetyltranferases, functions as the sole protein module known to bind acetyl-lysine motifs. Recent structural and functional analyses of bromodomains' recognition of lysine-acetylated peptides derived from major acetylation sites in histones and cellular proteins provide new insights into differences in ligand binding selectivity as well as unifying features of histone recognition by the bromodomains. These new findings highlight the functional importance of bromodomain/acetyl-lysine binding as a pivotal mechanism for regulating protein-protein interactions in histonedirected chromatin remodeling and gene transcription. These new studies also support the notion that functional diversity of a conserved bromodomain structural fold is achieved by evolutionary changes of structurally flexible amino-acid sequences in the ligand binding site such as the ZA and BC loops.
Nutrition & Metabolism, 2011
The biochemical landscape of lysine acetylation has expanded from a small number of proteins in t... more The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT), there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylate...
Nature Structural & Molecular Biology, 2008
The tandem PHD finger-bromodomain, found in many chromatin-associated proteins, has an important ... more The tandem PHD finger-bromodomain, found in many chromatin-associated proteins, has an important role in gene silencing by the human co-repressor KRAB-associated protein 1 (KAP1). Here we report the three-dimensional solution structure of the tandem PHD finger-bromodomain of KAP1. The structure reveals a distinct scaffold unifying the two protein modules, in which the first helix, α Z , of an atypical bromodomain forms the central hydrophobic core that anchors the other three helices of the bromodomain on one side and the zinc binding PHD finger on the other. A comprehensive mutation-based structure-function analysis correlating transcriptional repression, ubiquitin-conjugating enzyme 9 (UBC9) binding and SUMOylation shows that the PHD finger and the bromodomain of KAP1 cooperate as one functional unit to facilitate lysine SUMOylation, which is required for KAP1 co-repressor activity in gene silencing. These results demonstrate a previously unknown unified function for the tandem PHD finger-bromodomain as an intramolecular small ubiquitin-like modifier (SUMO) E3 ligase for transcriptional silencing. Chemical modifications of chromatin on the DNA (for example, methylation of cytosine) and DNA-packing histones (for example, acetylation, methylation, phosphorylation, ubiquitination and SUMOylation) are important in the epigenetic control of gene transcription in response to physiological and environmental stimuli 1-3. An emerging model suggests that there is an 'epigenetic code' embedded within chromatin to signify regions of distinct nuclear activities, such as heterochromatin formation or transcriptional activation 4-6. It is thought that the epigenetic code is established by chromatin-modifying enzymes and interpreted by proteins that bind the chromatin in a modification-sensitive manner. The discovery of methyl-CpG binding domains 7 , bromodomains as acetyllysine binding
Nature Cell Biology, 2008
Viruses recruit host proteins to secure viral genome maintenance and replication. However, whethe... more Viruses recruit host proteins to secure viral genome maintenance and replication. However, whether they modify host histones directly to interfere with chromatin-based transcription is unknown. Here we report that Paramecium bursaria chlorella virus 1 (PBCV-1) encodes a functional SET domain histone Lys methyltransferase (HKMTase) termed vSET, which is linked to rapid inhibition of host transcription after viral infection. We show that vSET is packaged in the PBCV-1 virion, and that it contains a nuclear localization signal and probably represses host transcription by methylating histone H3 at Lys 27 (H3K27), a modification known to trigger gene silencing in eukaryotes. We also show that vSET induces cell accumulation at the G2/M phase by recruiting the Polycomb repressive complex CBX8 to the methylated H3K27 site in a heterologous system. vSET-like proteins that have H3K27 methylation activity are conserved in chlorella viruses. Our findings suggest a viral mechanism to repress gene transcription by direct modification of chromatin by PBCV-1 vSET.
Epigenetic Mechanisms in Bacteria Bridge Physiology, Growth and Host–Pathogen Interactions
Handbook of Epigenetics
Inhibiteurs de bromodomaines comme modulateurs d'expression génique
L'invention concerne d'une maniere generale des composes et des compositions comprenant u... more L'invention concerne d'une maniere generale des composes et des compositions comprenant un ou plusieurs analogues de diphenylethylene, diphenylethylyne, et d'azobenzene. Ces composes sont utilises pour traiter des maladies associees a l'activite de NF-kB et de p53, telles que le cancer et les maladies inflammatoires.
Procédé de suppression d’une transcription de gène par méthylation d’histone lysine
L’invention concerne des procedes de suppression de l’expression transcriptionnelle d’un ou plusi... more L’invention concerne des procedes de suppression de l’expression transcriptionnelle d’un ou plusieurs genes par methylation des proteines de chromatine histone du ou des genes. Specifiquement, une methyltransferase d’histone lysine de domaine viral SET (proteine vSET ou de type vSET) methyle la lysine 27 d’une proteine 3 d’histone de gene (H3-K27) supprimant ainsi la transcription du gene.
Biomolecules, 2021
The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the t... more The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the transcriptional programming and biological outcomes of downstream genes. An array of epigenetic modifications plays a pivotal role in shaping the chromatin architecture, which controls DNA access to the transcriptional machinery. Acetylation of the amino acid lysine is a widespread epigenetic modification that serves as a marker for gene activation, which intertwines the maintenance of cellular homeostasis and the regulation of signaling during stress. The biochemical horizon of acetylation ranges from orchestrating the stability and cellular localization of proteins that engage in the cell cycle to DNA repair and metabolism. Furthermore, lysine acetyltransferases (KATs) modulate the functions of transcription factors that govern cellular response to microbial infections, genotoxic stress, and inflammation. Due to their central role in many biological processes, mutations in KATs cause de...
Molecules (Basel, Switzerland), Jan 2, 2018
Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the s... more Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the side-effects from anticancer therapies. Thus, small molecules with potential to downregulate the activation of p53 could minimize pathology emerging from anticancer therapies. Acetylation of p53 by the histone acetyltransferase (HAT) domain is the hallmark of coactivator CREB-binding protein (CBP) epigenetic function. During genotoxic stress, CBP HAT-mediated acetylation is essential for the activation of p53 to transcriptionally govern target genes, which control cellular responses. Here, we present a small molecule, NiCur, which blocks CBP HAT activity and downregulates p53 activation upon genotoxic stress. Computational modeling reveals that NiCur docks into the active site of CBP HAT. On promoter, the recruitment of p53 as well as RNA Polymerase II and levels of acetylation on histone H3 were diminished by NiCur. Specifically, NiCur reduces the levels of acetylation at lysine 27 on hi...
The following versions of software and data (see references i O) were used in the production of t... more The following versions of software and data (see references i O) were used in the production of this report:
NMR Structure of CBP Bromodomain in complex with p53 peptide
complex structure of PCAF bromodomain with small chemical ligand NP1
Method of Suppressing Gene Transcription Through Histone Lysine Methylation
Solution NMR structures of CBP bromodomain with small molecule of HBS
Annals of the New York Academy of Sciences, Jul 25, 2016
Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain-mediated lysine methylation, one of the maj... more Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain-mediated lysine methylation, one of the major epigenetic marks, has been found to regulate chromatin-mediated gene transcription. Published studies have established further that methylation is not restricted to nuclear proteins but is involved in many cellular processes, including growth, differentiation, immune regulation, and cancer progression. The biological complexity of lysine methylation emerges from its capacity to cause gene activation or gene repression owing to the specific position of methylated-lysine moieties on the chromatin. Accumulating evidence suggests that despite the absence of chromatin, viruses and prokaryotes also express SET proteins, although their functional roles remain relatively less investigated. One possibility could be that SET proteins in lower organisms have more than one biological function, for example, in regulating growth or in manipulating host transcription machinery in order to establish ...
Cancers, 2015
The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular res... more The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre-and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to-independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.
Proceedings of the National Academy of Sciences of the United States of America, Jan 16, 2014
Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastas... more Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyro...
Proceedings of the National Academy of Sciences of the United States of America, Jan 16, 2014
A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are ... more A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are driven by the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Having shown that bisphosphonates, a class of drugs used widely for the therapy of osteoporosis and metastatic bone disease, reduce cancer cell viability by targeting HER1, we explored their potential utility in the prevention and therapy of HER-driven cancers. We show that bisphosphonates inhibit colony formation by HER1(ΔE746-A750)-driven HCC827 NSCLCs and HER1(wt)-expressing MB231 triple negative breast cancers, but not by HER(low)-SW620 colon cancers. In parallel, oral gavage with bisphosphonates of mice xenografted with HCC827 or MB231 cells led to a significant reduction in tumor volume in both treatment and prevention protocols. This result was not seen with mice harboring HER(low) SW620 xenografts. We next explored whether bisphosphonates can serve as adjunctive therapies to tyrosine k...
Proteins: Structure, Function, and Bioinformatics, 2014
The fibroblast growth factor substrate 2 (FRS2) family proteins function as scaffolding adapters ... more The fibroblast growth factor substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding domain (PTB) and transfer signals from the activated receptors to downstream effector proteins. Here, we report the NMR structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain.
PLoS ONE, 2010
A hallmark of p53 function is to regulate a transcriptional program in response to extracellular ... more A hallmark of p53 function is to regulate a transcriptional program in response to extracellular and intracellular stress that directs cell cycle arrest, apoptosis, and cellular senescence. Independent of the role of p53 in the nucleus, some of the antiproliferative functions of p53 reside within the mitochondria [1]. p53 can arrest cell growth in response to mitochondrial p53 in an EJ bladder carcinoma cell environment that is naïve of p53 function until induced to express p53 [2]. TP53 can independently partition with endogenous nuclear and mitochondrial proteins consistent with the ability of p53 to enact senescence. In order to address the role of p53 in navigating cellular senescence through the mitochondria, we identified SirT3 to rescue EJ/p53 cells from induced p53-mediated growth arrest. Human SirT3 function appears coupled with p53 early during the initiation of p53 expression in the mitochondria by biochemical and cellular localization analysis. Our evidence suggests that SirT3 partially abrogates p53 activity to enact growth arrest and senescence. Additionally, we identified the chaperone protein BAG-2 in averting SirT3 targeting of p53-mediated senescence. These studies identify a complex relationship between p53, SirT3, and chaperoning factor BAG-2 that may link the salvaging and quality assurance of the p53 protein for control of cellular fate independent of transcriptional activity.
Oncogene, 2007
Histone lysine acetylation is central to epigenetic control of gene transcription. The bromodomai... more Histone lysine acetylation is central to epigenetic control of gene transcription. The bromodomain, found in chromatin-associated proteins and histone acetyltranferases, functions as the sole protein module known to bind acetyl-lysine motifs. Recent structural and functional analyses of bromodomains' recognition of lysine-acetylated peptides derived from major acetylation sites in histones and cellular proteins provide new insights into differences in ligand binding selectivity as well as unifying features of histone recognition by the bromodomains. These new findings highlight the functional importance of bromodomain/acetyl-lysine binding as a pivotal mechanism for regulating protein-protein interactions in histonedirected chromatin remodeling and gene transcription. These new studies also support the notion that functional diversity of a conserved bromodomain structural fold is achieved by evolutionary changes of structurally flexible amino-acid sequences in the ligand binding site such as the ZA and BC loops.
Nutrition & Metabolism, 2011
The biochemical landscape of lysine acetylation has expanded from a small number of proteins in t... more The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT), there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylate...
Nature Structural & Molecular Biology, 2008
The tandem PHD finger-bromodomain, found in many chromatin-associated proteins, has an important ... more The tandem PHD finger-bromodomain, found in many chromatin-associated proteins, has an important role in gene silencing by the human co-repressor KRAB-associated protein 1 (KAP1). Here we report the three-dimensional solution structure of the tandem PHD finger-bromodomain of KAP1. The structure reveals a distinct scaffold unifying the two protein modules, in which the first helix, α Z , of an atypical bromodomain forms the central hydrophobic core that anchors the other three helices of the bromodomain on one side and the zinc binding PHD finger on the other. A comprehensive mutation-based structure-function analysis correlating transcriptional repression, ubiquitin-conjugating enzyme 9 (UBC9) binding and SUMOylation shows that the PHD finger and the bromodomain of KAP1 cooperate as one functional unit to facilitate lysine SUMOylation, which is required for KAP1 co-repressor activity in gene silencing. These results demonstrate a previously unknown unified function for the tandem PHD finger-bromodomain as an intramolecular small ubiquitin-like modifier (SUMO) E3 ligase for transcriptional silencing. Chemical modifications of chromatin on the DNA (for example, methylation of cytosine) and DNA-packing histones (for example, acetylation, methylation, phosphorylation, ubiquitination and SUMOylation) are important in the epigenetic control of gene transcription in response to physiological and environmental stimuli 1-3. An emerging model suggests that there is an 'epigenetic code' embedded within chromatin to signify regions of distinct nuclear activities, such as heterochromatin formation or transcriptional activation 4-6. It is thought that the epigenetic code is established by chromatin-modifying enzymes and interpreted by proteins that bind the chromatin in a modification-sensitive manner. The discovery of methyl-CpG binding domains 7 , bromodomains as acetyllysine binding
Nature Cell Biology, 2008
Viruses recruit host proteins to secure viral genome maintenance and replication. However, whethe... more Viruses recruit host proteins to secure viral genome maintenance and replication. However, whether they modify host histones directly to interfere with chromatin-based transcription is unknown. Here we report that Paramecium bursaria chlorella virus 1 (PBCV-1) encodes a functional SET domain histone Lys methyltransferase (HKMTase) termed vSET, which is linked to rapid inhibition of host transcription after viral infection. We show that vSET is packaged in the PBCV-1 virion, and that it contains a nuclear localization signal and probably represses host transcription by methylating histone H3 at Lys 27 (H3K27), a modification known to trigger gene silencing in eukaryotes. We also show that vSET induces cell accumulation at the G2/M phase by recruiting the Polycomb repressive complex CBX8 to the methylated H3K27 site in a heterologous system. vSET-like proteins that have H3K27 methylation activity are conserved in chlorella viruses. Our findings suggest a viral mechanism to repress gene transcription by direct modification of chromatin by PBCV-1 vSET.