Shirish Patil - Academia.edu (original) (raw)
Papers by Shirish Patil
arXiv (Cornell University), Nov 25, 2021
Contaminant transport in porous media is often modeled by solving the Advection Dispersion Equati... more Contaminant transport in porous media is often modeled by solving the Advection Dispersion Equation (ADE) which describes the way the contaminant moves within the bulk fluid as well as the movement of the contaminant due to the bulk movement of the fluid phase. The simulation of contaminant transport can however prove to be computationally expensive especially if the porous medium is discretized into high-resolution grid blocks. We propose an interwell simulation model for advection dispersion equations (ISADE) to predict the concentration of contaminant observed at the pumping well. This method comprises of two main steps. Initially, the model divides the aquifer or reservoir into a series of 1D injector-producer pairs and uses the historical contaminant observation data to estimate five major unknowns in each of these control volumes: the interwell connectivity, the pore volume, the volumetric flowrate at the grid face, the dispersion coefficient, and the number of grids in each control volume. Finally, once the history matching process is complete, the estimated variables are used to predict the concentration of contaminant observed at the wells. Five example cases were studied and the results show that the ISADE model was able to predict with reasonable accuracy the concentration of contaminant observed. Furthermore, the model can easily handle changes in input parameters such as the concentration of contaminants released in the aquifer, and the injection and production rates.
Molecules, Feb 10, 2022
Static contact angle measurement is a widely applied method for wettability assessment. Despite i... more Static contact angle measurement is a widely applied method for wettability assessment. Despite its convenience, it suffers from errors induced by contact angle hysteresis, material heterogeneity, and other factors. This paper discusses the oil drop spreading phenomenon that was frequently observed during contact angle measurements. Experimental tests showed that this phenomenon is closely related to surfactants in the surrounding phase, the remaining oil on the rock surface, and oil inside the surrounding phase. A modified contact angle measurement process was proposed. In the modified method, deionized water was used as the surrounding phase, and a rock surface cleaning step was added. Subsequent measurements showed a very low chance of oil drop spreading and improved precision. A further comparison study showed that, when the surrounding phase was deionized water, the measured contact angle values tended to be closer to intermediate-wet conditions compared to the values measured in clean surfactant solutions. This difference became more significant when the surface was strongly water-wet or strongly oil-wet. As a result, the developed process has two prerequisites: that the in-situ contact angle values inside surfactant solutions are not required, and that the wettability alteration induced by the surfactant solution is irreversible.
Geofluids, Sep 26, 2018
An accurate evaluation of coal rock fracture conductivity is an important prerequisite for predic... more An accurate evaluation of coal rock fracture conductivity is an important prerequisite for predicting the productivity of CBM wells. Coal rock is soft and fragile, with low elastic modulus and high Poisson ratio. In the process of fracturing flowback, the contact deformation between proppant and fracture wall will affect the fracture conductivity when the proppant is embedded in the coal rock; thus the calculation method of plate fracture conductivity is no longer suitable for the evaluation of coal rock. Based on the contact deformation theory of elastic mechanics, a method for calculating contact deformation of proppant in fracture is proposed. Considering the effect of the deformation and embedded depth of proppant and the tortuosity of pore flow channel between proppant particles on fracture conductivity, a model for calculating fracture conductivity of coal rock fractures under three kinds of proppant arrangement (Model 4-1, Model 3-1, and Model 2-1) is established. Comparison of calculation results of theoretical model and experiments confirmed that the arrangement of proppant in coal rock fracture is closest to Model 3-1, and the influence of mechanical parameters of coal rock and proppant on fracture conductivity is calculated and analyzed by this theoretical model. The study shows that the coal rock fracture conductivity is affected little by Poisson's ratio of coal rock and proppant, which is greatly influenced by the elastic modulus of them, and the effect of particle size of proppant is especially significant.
Processes, Aug 2, 2019
Application of foam in various upstream operations, such as in enhanced oil recovery, has gained ... more Application of foam in various upstream operations, such as in enhanced oil recovery, has gained significant attention in recent years. A good foaming agent should generate a stable foam, must be thermally stable (>90 • C, typical reservoir temperature), must have a high tolerance to salinity, and should have low adsorption on the reservoir rock. In view of this, four thermally stable and salt-tolerant polyoxyethylene cationic gemini surfactants were synthesized with different spacers (mono phenyl and biphenyl) and different counterions (Br -and Cl -). Foaming properties were evaluated using initial foam generation, foam volume stability at a given time, bubble count, and average foam bubble radius. The effect of counterions and nature of spacers, with and without the presence of salts, on foaming properties was evaluated. It was found that number of phenyl rings (mono phenyl and biphenyl) had no significant effect on foamability and foam stability in the presence or absence of salts. However, the effect of counterions was prominent in deionized water. In deionized water, foam generated by gemini surfactants with bromide as a counterion was more stable compared to the foam generated using the surfactant containing chloride as the counterion. In saline solution, the type of counterion had no effect on the foamability or foam stability of the foam generated using synthesized cationic gemini surfactants. The foam volume stability decreased by the addition of salts; however, a further increase in salt concentration enhanced the foam volume stability. The synthesized surfactants showed good thermal stability, salt tolerance, and foaming properties and can be an attractive choice for upstream applications.
Polymers, May 1, 2020
Compatible surfactant-polymer (SP) hybrid systems at high temperature are in great demand due to ... more Compatible surfactant-polymer (SP) hybrid systems at high temperature are in great demand due to the necessity of chemical flooding in high-temperature oil reservoirs. The rheological properties of novel SP systems were studied. The SP system used in this study consists of a commercial polymer and four in-house synthesized polyoxyethylene cationic gemini surfactants with various spacers (mono phenyl and biphenyl ring) and different counterions (bromide and chloride). The impact of surfactant concentration, spacer nature, counterions, and temperature on the rheological features of SP solutions was examined using oscillation and shear measurements. The results were compared with a pure commercial polymer. All surfactants exhibited good thermal stability in seawater with no precipitation. Shear viscosity and storage modulus were measured as a function of shear rate and angular frequency, respectively. The experimental results revealed that the novel SP solution with a mono phenyl and chloride counterions produces a better performance in comparison with the SP solution, which contains mono phenyl and bromide counterions. Moreover, the effect is enhanced when the mono phenyl ring is replaced with a biphenyl ring. Shear viscosity and storage modulus decrease by increasing surfactant concentration at the same temperature, due to the charge screening effect. Storage modulus and complex viscosity reduce by increasing the temperature at a constant angular frequency of 10 rad/s. Among all studied SP systems, a surfactant containing a biphenyl ring in the spacer with chloride as a counterion has the least effect on the shear viscosity of the polymer. This study improves the understanding of tuning the surfactant composition in making SP solutions with better rheological properties.
Interim results are presented from the project designed to characterize, quantify, and determine ... more Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40 -100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied t o determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.
Umiat field, located in Alaska North Slope poses unique development challenges because of its rem... more Umiat field, located in Alaska North Slope poses unique development challenges because of its remote location and permafrost within the reservoir. This hinders the field development, and further leads to a potential low expected oil recovery despite latest estimates of oil in-place volume of 1550 million barrels. The objective of this work is to assess various possible well patterns of the Umiat field development and perform a detailed parametric study to maximize oil recovery and minimize well costs using statistical methods. Design of Experiments (DoE) is implemented to design simulation runs for characterizing system behavior using the effect of certain critical parameters, such as well type, horizontal well length, well pattern geometry, and injection/production constraints on oil recovery. After carrying out simulation runs using a commercially available simulation software, well cost is estimated for each simulation case. Response Surface methodology (RSM) is used for optimization of well pattern parameters. The parameters, their interactions and response are modeled into a mathematical equation to maximize oil recovery and minimize well cost. Economics plays a key role in deciding the best well pattern for any field during the field development phase. Hence, while solving the optimization problem, well costs have been incorporated in the analysis. Thus, based on the results of the study performed on selected parameters, using interdependence of the above mentioned methodologies, optimum combinations of variables for maximizing oil recovery and minimizing well cost will be obtained. Additionally, reservoir level optimization assists in providing a much needed platform for solving the integrated production optimization problem involving parameters relevant at different levels, such as reservoir, wells and field. As a result, this optimum well pattern methodology will help ensure optimum oil recovery in the otherwise economically unattractive field and can provide significant insights into developing the field more efficiently. Computational algorithms are gaining popularity for solving optimization problems, as opposed to manual simulations. DoE is effective, simple to use and saves computational time, when compared to algorithms. Although, DoE has been used widely in the oil industry, its i application in domains like well pattern optimization is novel. This research presents a case study for the application of DoE and RSM to well optimization in a real existing field, considering all possible scenarios and variables. As a result, increase in estimated oil recovery is achieved within economical constraints through well pattern optimization.
Energies, Sep 4, 2019
Well stimulation using hydrochloric acid (HCl) is a common practice in carbonate reservoirs to ov... more Well stimulation using hydrochloric acid (HCl) is a common practice in carbonate reservoirs to overcome formation damage in the near wellbore area. Using HCl for matrix acidizing has many limitations at high-temperature (HT) conditions, such as tubulars corrosion and face dissolution due to the fast reaction rate. Chelating agents, such as L-glutamic acid-N,N-diacetic acid (GLDA), are alternatives to HCl to overcome these problems. We studied the effect of diluting GLDA in seawater on the reaction kinetics with carbonate rocks under HT conditions at low pH (3.8). Results of the reaction of carbonate at 1000 psi and 150, 200, and 250 • F with GLDA prepared in both fresh and seawater, GLDA/DI and GLDA/SW, respectively, are presented. The reaction kinetics experiments were carried out in HT rotating disk apparatus (RDA) at rotational speeds ranging from 500 to 2000 revolutions per minute (RPM) at a fixed temperature. Indiana limestone and Austin chalk were used to studying the effect of rock facies on the reaction of GLDA with rock samples. In both GLDA/DI and GLDA/SW, the reaction regime of 20 wt% GLDA (3.8 pH) with Indiana limestone was mass transfer limited. The reaction rate and diffusion coefficient were highly dependent on the temperature. For Austin chalk, at 200 • F and 1000 psi the diffusion coefficient of GLDA/SW is an order of magnitude of its value with Indiana limestone using the same fluid. Diffusion coefficients were used to estimate the optimum injection rate for stimulating HT carbonate formation and compared with coreflooding results. The data presented in this paper will support the numerical simulation of the acid flow in carbonate reservoirs.
Energies, Feb 8, 2018
Although technical advances in hydraulically fracturing and drilling enable commercial production... more Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA) has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs) to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability) on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF) and non-uniform properties of fractures (NPF). The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it's significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.
Gas hydrates represent a huge potential future resource of natural gas. However, significant tech... more Gas hydrates represent a huge potential future resource of natural gas. However, significant technical issues need to be resolved before this enormous resource can be considered to be an economically producible reserve. Developments in numerical reservoir simulations give useful information in predicting the technical and economic analysis of the hydrate-dissociation process. For this reason, a commercial reservoir simulator, CMG (Computer Modeling Group) STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) has been adapted in this study to model gas hydrate dissociation caused by several production mechanisms (depressurization, hot water injection and steam injection). Even though CMG is a commercially available simulator capable of handling thermal oil recovery processes, the novel approach of this work is the way by which the simulator was modified by formulating a kinetic and thermodynamic model to describe the hydrate decomposition. The simulator can calculate gas and water production rates from a well, and the profiles of pressure, temperature and saturation distributions in the formation for various operating conditions. Results indicate that a significant amount of gas can be produced from a hypothetical hydrate formation overlying a free gas accumulation by several different production scenarios. However, steam injection remarkably improves gas production over depressurization and hot water injection. A revised axisymmetric model for simulating gas production from hydrate decomposition in porous media by a depressurization method is also presented. Self-similar solutions are obtained for constant well pressure and fixed natural gas output. A comparison of these two boundary conditions at the well showed that a higher gas flow rate can be achieved in the long run in the case of constant well pressure over that of fixed gas output in spite of slower movement of the dissociation front. For different reservoir temperatures and various well boundary conditions, distributions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas zone, are evaluated.
Scientific Reports, Jan 19, 2023
Efficient demulsifiers for fast demulsification of asphaltene stabilized crude oil emulsions are ... more Efficient demulsifiers for fast demulsification of asphaltene stabilized crude oil emulsions are currently in high demand. In this work, we evaluated the demulsification potential of ethyl cellulose (EC) demulsifiers with varying viscosities-4 cp, 22 cp, and 100 cp, designated as EC-4, EC-22, and EC-100. Demulsifcation efficiency (DE) of these demulsifiers to remove water from emulsions produced from distilled water, seawater, and different salts (NaCl, MgCl 2, and CaCl 2 ) solution were assessed using the bottle test technique at ambient and elevated temperatures (25 °C and 90 °C). The bottle test outcomes showed that EC-4 and EC-22 had better performance at the ambient conditions to demulsify the emulsions formed from distilled water with %DE of 85.71% and 28.57%, respectively, while EC-100 achieved 3.9% water removal owing to its high viscosity which inhibited its adsorption at the oil-water interface. At demulsification temperature (90 °C) under the emulsions from distilled water, the %DE of EC-4, EC-22, and EC-100 was 99.23%, 58.57%, and 42.85%, respectively. Seawater hastened the demulsification activities of these demulsifiers. Also, these demulsifiers demonstrated excellent demulsification in emulsions from various salts. The demulsification performance of the EC-4 demulsifier in the presence of any of these salts was approximately 98% while MgCl 2 and CaCl 2 accelerated the water/oil separation performance of EC-22 and EC-100 by promoting their diffusion and adsorption at the interface. Viscosity and shear stress measurements corroborated the results obtained from the bottle tests. Injection of EC demulsifiers led to a reduction in the viscosity and shear stress of the formed emulsion. Reduction in the shear stress and viscosity were highest in EC-4 and lowest in EC-100. Optical microscopic images of emulsion injected with EC-4 demulsifier were analyzed at various periods during viscosity measurements. Based on the optical images obtained at different durations, a demulsification mechanism describing the activity of the EC demulsifier was proposed.
Scientific Reports
In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhanci... more In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhancing oil recovery by reducing interfacial tension and/or modifying wettability. However, the effectiveness and economic feasibility of the cEOR process are compromised due to the adsorption of surfactants on rock surfaces. Therefore, surfactant adsorption must be reduced to make the cEOR process efficient and economical. Herein, the synergic application of low salinity water and a cationic gemini surfactant was investigated in a carbonate rock. Firstly, the interfacial tension (IFT) of the oil-brine interface with surfactant at various temperatures was measured. Subsequently, the rock wettability was determined under high-pressure and high-temperature conditions. Finally, the study examined the impact of low salinity water on the adsorption of the cationic gemini surfactant, both statically and dynamically. The results showed that the low salinity water condition does not cause a significa...
Wettability has a strong influence on the efficiency of oil recovery. Experiments are being condu... more Wettability has a strong influence on the efficiency of oil recovery. Experiments are being conducted to ascertain the influence of wettability on recovery efficiency in representative Alaskan cores, and demonstrate how influencing is the wettability through injection of fluids with different salinity and composition can be used to improve recovery efficiency. Effects of salinity on wettability and residual oil saturation during water flooding are of particular interest in the ongoing experiments. It is very evident that changing the wettability conditions of ANS reservoirs by means of injected brine composition and salinity may be a viable, economical means to achieve significant improvements in the EOR efficiency in Alaskan reservoirs. A number of waterfloods were performed in secondary mode (low salinity brine injected from initial water saturation) at partial reservoir conditions (i.e. reservoir temperature and reservoir brine). Experiments thus far showed reduction in residual ...
Gas Hydrates: …, 2004
Presently, depressurization, thermal stimulation, inhibitor injection, or a combination of these ... more Presently, depressurization, thermal stimulation, inhibitor injection, or a combination of these methods have been considered as possible means of gas hydrate production. Depressurization is the most often considered method for commercial production of ...
Computers & Fluids, 2013
ABSTRACT An ensemble-based method has been developed and successfully applied to simultaneously e... more ABSTRACT An ensemble-based method has been developed and successfully applied to simultaneously estimate relative permeability and capillary pressure curves for tight formations by history matching the measurement data. The power-law and B-spline models are first used to represent the relative permeability and capillary pressure curves, respectively. Then, parameters of such two models are tuned automatically and finally determined once the measurement data is assimilated completely and history matched. The estimation of relative permeability and capillary pressure has been found to improve progressively and the corresponding uncertainties are mitigated gradually as more measurement data is assimilated. As assimilation of the measurement data is completed, an excellent agreement has been found between the updated and reference relative permeability and capillary pressure curves, though estimation accuracy suffers slightly when B-spline interpolation is used. Among all the to-be-estimated parameters, the endpoint of the capillary pressure curve shows its compromising accuracy, depending on its initial value.
Frontiers in Energy Research
Injection of CO2 to enhance oil recovery is widely used due to its multiple advantages such as mo... more Injection of CO2 to enhance oil recovery is widely used due to its multiple advantages such as mobilizing the oil and sequestration of carbon dioxide. Injection of CO2 can enhance oil recovery by reducing oil viscosity and improving overall fluid mobility. However, several problems are associated with CO2 injection such as viscous fingering, gravity override, and CO2 channeling that results in early gas breakthrough, low sweep efficiency, and low ultimate oil recovery. In this study, dual benefits of CO2 injection are presented: enhancing oil recovery and sequestering carbon dioxide. In this work, different scenarios of field scale simulation were conducted to evaluate oil recovery during CO2 injection, and the CMG (Computer Modeling Group) software package was used. Three main scenarios were examined which are CO2 injection into the reservoir, CO2 injection into the aquifer, and CO2 injection into the aquifer followed by waterflooding. Also, three well configurations were utilized—...
Water
Calculation of REV (representative elementary volume) properties of geological porous media refer... more Calculation of REV (representative elementary volume) properties of geological porous media refers to the process of creating a 3D digital representation of a rock sample, typically obtained from imaging techniques such as X-ray microtomography. This technique allows for a detailed analysis of the internal structure and the properties of rocks, as well as precise calculation of various flow parameters. However, one major challenge with calculation of REV properties of geological porous media is the high computational cost required to generate accurate results, especially for large and complex samples. In this study, we constructed 3D digital cores of dune sand and fractured shale using CT scanning technology, and then used two image processing techniques, namely digital core image resampling and cutting, to reduce the computational cost of calculating digital core permeability. Next, a fast permeability calculation method is employed to reduce the complexity of permeability calculat...
Molecules
One of the foremost causes of wellbore instability during drilling operations is shale swelling a... more One of the foremost causes of wellbore instability during drilling operations is shale swelling and hydration induced by the interaction of clay with water-based mud (WBM). Recently, the use of surfactants has received great interest for preventing shale swelling, bit-balling problems, and providing lubricity. Herein, a novel synthesized magnetic surfactant was investigated for its performance as a shale swelling inhibitor in drilling mud. The conventional WBM and magnetic surfactant mixed WBM (MS–WBM) were formulated and characterized using Fourier Transform Infrared (FTIR) and Thermogravimetric analyzer (TGA). Subsequently, the performance of 0.4 wt% magnetic surfactant as shale swelling and clay hydration inhibitor in drilling mud was investigated by conducting linear swelling and capillary suction timer (CST) tests. Afterward, the rheological and filtration properties of the MS–WBM were measured and compared to conventional WBM. Lastly, the swelling mechanism was investigated by...
arXiv (Cornell University), Nov 25, 2021
Contaminant transport in porous media is often modeled by solving the Advection Dispersion Equati... more Contaminant transport in porous media is often modeled by solving the Advection Dispersion Equation (ADE) which describes the way the contaminant moves within the bulk fluid as well as the movement of the contaminant due to the bulk movement of the fluid phase. The simulation of contaminant transport can however prove to be computationally expensive especially if the porous medium is discretized into high-resolution grid blocks. We propose an interwell simulation model for advection dispersion equations (ISADE) to predict the concentration of contaminant observed at the pumping well. This method comprises of two main steps. Initially, the model divides the aquifer or reservoir into a series of 1D injector-producer pairs and uses the historical contaminant observation data to estimate five major unknowns in each of these control volumes: the interwell connectivity, the pore volume, the volumetric flowrate at the grid face, the dispersion coefficient, and the number of grids in each control volume. Finally, once the history matching process is complete, the estimated variables are used to predict the concentration of contaminant observed at the wells. Five example cases were studied and the results show that the ISADE model was able to predict with reasonable accuracy the concentration of contaminant observed. Furthermore, the model can easily handle changes in input parameters such as the concentration of contaminants released in the aquifer, and the injection and production rates.
Molecules, Feb 10, 2022
Static contact angle measurement is a widely applied method for wettability assessment. Despite i... more Static contact angle measurement is a widely applied method for wettability assessment. Despite its convenience, it suffers from errors induced by contact angle hysteresis, material heterogeneity, and other factors. This paper discusses the oil drop spreading phenomenon that was frequently observed during contact angle measurements. Experimental tests showed that this phenomenon is closely related to surfactants in the surrounding phase, the remaining oil on the rock surface, and oil inside the surrounding phase. A modified contact angle measurement process was proposed. In the modified method, deionized water was used as the surrounding phase, and a rock surface cleaning step was added. Subsequent measurements showed a very low chance of oil drop spreading and improved precision. A further comparison study showed that, when the surrounding phase was deionized water, the measured contact angle values tended to be closer to intermediate-wet conditions compared to the values measured in clean surfactant solutions. This difference became more significant when the surface was strongly water-wet or strongly oil-wet. As a result, the developed process has two prerequisites: that the in-situ contact angle values inside surfactant solutions are not required, and that the wettability alteration induced by the surfactant solution is irreversible.
Geofluids, Sep 26, 2018
An accurate evaluation of coal rock fracture conductivity is an important prerequisite for predic... more An accurate evaluation of coal rock fracture conductivity is an important prerequisite for predicting the productivity of CBM wells. Coal rock is soft and fragile, with low elastic modulus and high Poisson ratio. In the process of fracturing flowback, the contact deformation between proppant and fracture wall will affect the fracture conductivity when the proppant is embedded in the coal rock; thus the calculation method of plate fracture conductivity is no longer suitable for the evaluation of coal rock. Based on the contact deformation theory of elastic mechanics, a method for calculating contact deformation of proppant in fracture is proposed. Considering the effect of the deformation and embedded depth of proppant and the tortuosity of pore flow channel between proppant particles on fracture conductivity, a model for calculating fracture conductivity of coal rock fractures under three kinds of proppant arrangement (Model 4-1, Model 3-1, and Model 2-1) is established. Comparison of calculation results of theoretical model and experiments confirmed that the arrangement of proppant in coal rock fracture is closest to Model 3-1, and the influence of mechanical parameters of coal rock and proppant on fracture conductivity is calculated and analyzed by this theoretical model. The study shows that the coal rock fracture conductivity is affected little by Poisson's ratio of coal rock and proppant, which is greatly influenced by the elastic modulus of them, and the effect of particle size of proppant is especially significant.
Processes, Aug 2, 2019
Application of foam in various upstream operations, such as in enhanced oil recovery, has gained ... more Application of foam in various upstream operations, such as in enhanced oil recovery, has gained significant attention in recent years. A good foaming agent should generate a stable foam, must be thermally stable (>90 • C, typical reservoir temperature), must have a high tolerance to salinity, and should have low adsorption on the reservoir rock. In view of this, four thermally stable and salt-tolerant polyoxyethylene cationic gemini surfactants were synthesized with different spacers (mono phenyl and biphenyl) and different counterions (Br -and Cl -). Foaming properties were evaluated using initial foam generation, foam volume stability at a given time, bubble count, and average foam bubble radius. The effect of counterions and nature of spacers, with and without the presence of salts, on foaming properties was evaluated. It was found that number of phenyl rings (mono phenyl and biphenyl) had no significant effect on foamability and foam stability in the presence or absence of salts. However, the effect of counterions was prominent in deionized water. In deionized water, foam generated by gemini surfactants with bromide as a counterion was more stable compared to the foam generated using the surfactant containing chloride as the counterion. In saline solution, the type of counterion had no effect on the foamability or foam stability of the foam generated using synthesized cationic gemini surfactants. The foam volume stability decreased by the addition of salts; however, a further increase in salt concentration enhanced the foam volume stability. The synthesized surfactants showed good thermal stability, salt tolerance, and foaming properties and can be an attractive choice for upstream applications.
Polymers, May 1, 2020
Compatible surfactant-polymer (SP) hybrid systems at high temperature are in great demand due to ... more Compatible surfactant-polymer (SP) hybrid systems at high temperature are in great demand due to the necessity of chemical flooding in high-temperature oil reservoirs. The rheological properties of novel SP systems were studied. The SP system used in this study consists of a commercial polymer and four in-house synthesized polyoxyethylene cationic gemini surfactants with various spacers (mono phenyl and biphenyl ring) and different counterions (bromide and chloride). The impact of surfactant concentration, spacer nature, counterions, and temperature on the rheological features of SP solutions was examined using oscillation and shear measurements. The results were compared with a pure commercial polymer. All surfactants exhibited good thermal stability in seawater with no precipitation. Shear viscosity and storage modulus were measured as a function of shear rate and angular frequency, respectively. The experimental results revealed that the novel SP solution with a mono phenyl and chloride counterions produces a better performance in comparison with the SP solution, which contains mono phenyl and bromide counterions. Moreover, the effect is enhanced when the mono phenyl ring is replaced with a biphenyl ring. Shear viscosity and storage modulus decrease by increasing surfactant concentration at the same temperature, due to the charge screening effect. Storage modulus and complex viscosity reduce by increasing the temperature at a constant angular frequency of 10 rad/s. Among all studied SP systems, a surfactant containing a biphenyl ring in the spacer with chloride as a counterion has the least effect on the shear viscosity of the polymer. This study improves the understanding of tuning the surfactant composition in making SP solutions with better rheological properties.
Interim results are presented from the project designed to characterize, quantify, and determine ... more Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40 -100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied t o determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.
Umiat field, located in Alaska North Slope poses unique development challenges because of its rem... more Umiat field, located in Alaska North Slope poses unique development challenges because of its remote location and permafrost within the reservoir. This hinders the field development, and further leads to a potential low expected oil recovery despite latest estimates of oil in-place volume of 1550 million barrels. The objective of this work is to assess various possible well patterns of the Umiat field development and perform a detailed parametric study to maximize oil recovery and minimize well costs using statistical methods. Design of Experiments (DoE) is implemented to design simulation runs for characterizing system behavior using the effect of certain critical parameters, such as well type, horizontal well length, well pattern geometry, and injection/production constraints on oil recovery. After carrying out simulation runs using a commercially available simulation software, well cost is estimated for each simulation case. Response Surface methodology (RSM) is used for optimization of well pattern parameters. The parameters, their interactions and response are modeled into a mathematical equation to maximize oil recovery and minimize well cost. Economics plays a key role in deciding the best well pattern for any field during the field development phase. Hence, while solving the optimization problem, well costs have been incorporated in the analysis. Thus, based on the results of the study performed on selected parameters, using interdependence of the above mentioned methodologies, optimum combinations of variables for maximizing oil recovery and minimizing well cost will be obtained. Additionally, reservoir level optimization assists in providing a much needed platform for solving the integrated production optimization problem involving parameters relevant at different levels, such as reservoir, wells and field. As a result, this optimum well pattern methodology will help ensure optimum oil recovery in the otherwise economically unattractive field and can provide significant insights into developing the field more efficiently. Computational algorithms are gaining popularity for solving optimization problems, as opposed to manual simulations. DoE is effective, simple to use and saves computational time, when compared to algorithms. Although, DoE has been used widely in the oil industry, its i application in domains like well pattern optimization is novel. This research presents a case study for the application of DoE and RSM to well optimization in a real existing field, considering all possible scenarios and variables. As a result, increase in estimated oil recovery is achieved within economical constraints through well pattern optimization.
Energies, Sep 4, 2019
Well stimulation using hydrochloric acid (HCl) is a common practice in carbonate reservoirs to ov... more Well stimulation using hydrochloric acid (HCl) is a common practice in carbonate reservoirs to overcome formation damage in the near wellbore area. Using HCl for matrix acidizing has many limitations at high-temperature (HT) conditions, such as tubulars corrosion and face dissolution due to the fast reaction rate. Chelating agents, such as L-glutamic acid-N,N-diacetic acid (GLDA), are alternatives to HCl to overcome these problems. We studied the effect of diluting GLDA in seawater on the reaction kinetics with carbonate rocks under HT conditions at low pH (3.8). Results of the reaction of carbonate at 1000 psi and 150, 200, and 250 • F with GLDA prepared in both fresh and seawater, GLDA/DI and GLDA/SW, respectively, are presented. The reaction kinetics experiments were carried out in HT rotating disk apparatus (RDA) at rotational speeds ranging from 500 to 2000 revolutions per minute (RPM) at a fixed temperature. Indiana limestone and Austin chalk were used to studying the effect of rock facies on the reaction of GLDA with rock samples. In both GLDA/DI and GLDA/SW, the reaction regime of 20 wt% GLDA (3.8 pH) with Indiana limestone was mass transfer limited. The reaction rate and diffusion coefficient were highly dependent on the temperature. For Austin chalk, at 200 • F and 1000 psi the diffusion coefficient of GLDA/SW is an order of magnitude of its value with Indiana limestone using the same fluid. Diffusion coefficients were used to estimate the optimum injection rate for stimulating HT carbonate formation and compared with coreflooding results. The data presented in this paper will support the numerical simulation of the acid flow in carbonate reservoirs.
Energies, Feb 8, 2018
Although technical advances in hydraulically fracturing and drilling enable commercial production... more Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA) has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs) to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability) on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF) and non-uniform properties of fractures (NPF). The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it's significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.
Gas hydrates represent a huge potential future resource of natural gas. However, significant tech... more Gas hydrates represent a huge potential future resource of natural gas. However, significant technical issues need to be resolved before this enormous resource can be considered to be an economically producible reserve. Developments in numerical reservoir simulations give useful information in predicting the technical and economic analysis of the hydrate-dissociation process. For this reason, a commercial reservoir simulator, CMG (Computer Modeling Group) STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) has been adapted in this study to model gas hydrate dissociation caused by several production mechanisms (depressurization, hot water injection and steam injection). Even though CMG is a commercially available simulator capable of handling thermal oil recovery processes, the novel approach of this work is the way by which the simulator was modified by formulating a kinetic and thermodynamic model to describe the hydrate decomposition. The simulator can calculate gas and water production rates from a well, and the profiles of pressure, temperature and saturation distributions in the formation for various operating conditions. Results indicate that a significant amount of gas can be produced from a hypothetical hydrate formation overlying a free gas accumulation by several different production scenarios. However, steam injection remarkably improves gas production over depressurization and hot water injection. A revised axisymmetric model for simulating gas production from hydrate decomposition in porous media by a depressurization method is also presented. Self-similar solutions are obtained for constant well pressure and fixed natural gas output. A comparison of these two boundary conditions at the well showed that a higher gas flow rate can be achieved in the long run in the case of constant well pressure over that of fixed gas output in spite of slower movement of the dissociation front. For different reservoir temperatures and various well boundary conditions, distributions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas zone, are evaluated.
Scientific Reports, Jan 19, 2023
Efficient demulsifiers for fast demulsification of asphaltene stabilized crude oil emulsions are ... more Efficient demulsifiers for fast demulsification of asphaltene stabilized crude oil emulsions are currently in high demand. In this work, we evaluated the demulsification potential of ethyl cellulose (EC) demulsifiers with varying viscosities-4 cp, 22 cp, and 100 cp, designated as EC-4, EC-22, and EC-100. Demulsifcation efficiency (DE) of these demulsifiers to remove water from emulsions produced from distilled water, seawater, and different salts (NaCl, MgCl 2, and CaCl 2 ) solution were assessed using the bottle test technique at ambient and elevated temperatures (25 °C and 90 °C). The bottle test outcomes showed that EC-4 and EC-22 had better performance at the ambient conditions to demulsify the emulsions formed from distilled water with %DE of 85.71% and 28.57%, respectively, while EC-100 achieved 3.9% water removal owing to its high viscosity which inhibited its adsorption at the oil-water interface. At demulsification temperature (90 °C) under the emulsions from distilled water, the %DE of EC-4, EC-22, and EC-100 was 99.23%, 58.57%, and 42.85%, respectively. Seawater hastened the demulsification activities of these demulsifiers. Also, these demulsifiers demonstrated excellent demulsification in emulsions from various salts. The demulsification performance of the EC-4 demulsifier in the presence of any of these salts was approximately 98% while MgCl 2 and CaCl 2 accelerated the water/oil separation performance of EC-22 and EC-100 by promoting their diffusion and adsorption at the interface. Viscosity and shear stress measurements corroborated the results obtained from the bottle tests. Injection of EC demulsifiers led to a reduction in the viscosity and shear stress of the formed emulsion. Reduction in the shear stress and viscosity were highest in EC-4 and lowest in EC-100. Optical microscopic images of emulsion injected with EC-4 demulsifier were analyzed at various periods during viscosity measurements. Based on the optical images obtained at different durations, a demulsification mechanism describing the activity of the EC demulsifier was proposed.
Scientific Reports
In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhanci... more In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhancing oil recovery by reducing interfacial tension and/or modifying wettability. However, the effectiveness and economic feasibility of the cEOR process are compromised due to the adsorption of surfactants on rock surfaces. Therefore, surfactant adsorption must be reduced to make the cEOR process efficient and economical. Herein, the synergic application of low salinity water and a cationic gemini surfactant was investigated in a carbonate rock. Firstly, the interfacial tension (IFT) of the oil-brine interface with surfactant at various temperatures was measured. Subsequently, the rock wettability was determined under high-pressure and high-temperature conditions. Finally, the study examined the impact of low salinity water on the adsorption of the cationic gemini surfactant, both statically and dynamically. The results showed that the low salinity water condition does not cause a significa...
Wettability has a strong influence on the efficiency of oil recovery. Experiments are being condu... more Wettability has a strong influence on the efficiency of oil recovery. Experiments are being conducted to ascertain the influence of wettability on recovery efficiency in representative Alaskan cores, and demonstrate how influencing is the wettability through injection of fluids with different salinity and composition can be used to improve recovery efficiency. Effects of salinity on wettability and residual oil saturation during water flooding are of particular interest in the ongoing experiments. It is very evident that changing the wettability conditions of ANS reservoirs by means of injected brine composition and salinity may be a viable, economical means to achieve significant improvements in the EOR efficiency in Alaskan reservoirs. A number of waterfloods were performed in secondary mode (low salinity brine injected from initial water saturation) at partial reservoir conditions (i.e. reservoir temperature and reservoir brine). Experiments thus far showed reduction in residual ...
Gas Hydrates: …, 2004
Presently, depressurization, thermal stimulation, inhibitor injection, or a combination of these ... more Presently, depressurization, thermal stimulation, inhibitor injection, or a combination of these methods have been considered as possible means of gas hydrate production. Depressurization is the most often considered method for commercial production of ...
Computers & Fluids, 2013
ABSTRACT An ensemble-based method has been developed and successfully applied to simultaneously e... more ABSTRACT An ensemble-based method has been developed and successfully applied to simultaneously estimate relative permeability and capillary pressure curves for tight formations by history matching the measurement data. The power-law and B-spline models are first used to represent the relative permeability and capillary pressure curves, respectively. Then, parameters of such two models are tuned automatically and finally determined once the measurement data is assimilated completely and history matched. The estimation of relative permeability and capillary pressure has been found to improve progressively and the corresponding uncertainties are mitigated gradually as more measurement data is assimilated. As assimilation of the measurement data is completed, an excellent agreement has been found between the updated and reference relative permeability and capillary pressure curves, though estimation accuracy suffers slightly when B-spline interpolation is used. Among all the to-be-estimated parameters, the endpoint of the capillary pressure curve shows its compromising accuracy, depending on its initial value.
Frontiers in Energy Research
Injection of CO2 to enhance oil recovery is widely used due to its multiple advantages such as mo... more Injection of CO2 to enhance oil recovery is widely used due to its multiple advantages such as mobilizing the oil and sequestration of carbon dioxide. Injection of CO2 can enhance oil recovery by reducing oil viscosity and improving overall fluid mobility. However, several problems are associated with CO2 injection such as viscous fingering, gravity override, and CO2 channeling that results in early gas breakthrough, low sweep efficiency, and low ultimate oil recovery. In this study, dual benefits of CO2 injection are presented: enhancing oil recovery and sequestering carbon dioxide. In this work, different scenarios of field scale simulation were conducted to evaluate oil recovery during CO2 injection, and the CMG (Computer Modeling Group) software package was used. Three main scenarios were examined which are CO2 injection into the reservoir, CO2 injection into the aquifer, and CO2 injection into the aquifer followed by waterflooding. Also, three well configurations were utilized—...
Water
Calculation of REV (representative elementary volume) properties of geological porous media refer... more Calculation of REV (representative elementary volume) properties of geological porous media refers to the process of creating a 3D digital representation of a rock sample, typically obtained from imaging techniques such as X-ray microtomography. This technique allows for a detailed analysis of the internal structure and the properties of rocks, as well as precise calculation of various flow parameters. However, one major challenge with calculation of REV properties of geological porous media is the high computational cost required to generate accurate results, especially for large and complex samples. In this study, we constructed 3D digital cores of dune sand and fractured shale using CT scanning technology, and then used two image processing techniques, namely digital core image resampling and cutting, to reduce the computational cost of calculating digital core permeability. Next, a fast permeability calculation method is employed to reduce the complexity of permeability calculat...
Molecules
One of the foremost causes of wellbore instability during drilling operations is shale swelling a... more One of the foremost causes of wellbore instability during drilling operations is shale swelling and hydration induced by the interaction of clay with water-based mud (WBM). Recently, the use of surfactants has received great interest for preventing shale swelling, bit-balling problems, and providing lubricity. Herein, a novel synthesized magnetic surfactant was investigated for its performance as a shale swelling inhibitor in drilling mud. The conventional WBM and magnetic surfactant mixed WBM (MS–WBM) were formulated and characterized using Fourier Transform Infrared (FTIR) and Thermogravimetric analyzer (TGA). Subsequently, the performance of 0.4 wt% magnetic surfactant as shale swelling and clay hydration inhibitor in drilling mud was investigated by conducting linear swelling and capillary suction timer (CST) tests. Afterward, the rheological and filtration properties of the MS–WBM were measured and compared to conventional WBM. Lastly, the swelling mechanism was investigated by...