Slimen Selmi - Academia.edu (original) (raw)
Papers by Slimen Selmi
RSC Adv., 2016
Malathion (M) is an organophosphorus pesticide of utmost concern because of its adverse effects o... more Malathion (M) is an organophosphorus pesticide of utmost concern because of its adverse effects on non-targeted organisms.
Toxicology Reports
The present study was undertaken to determine the effects of malathion exposure on oxidative stre... more The present study was undertaken to determine the effects of malathion exposure on oxidative stress, functional and metabolic parameters in kidney and liver of prepubertal male mice. For this reason, two separated groups of prepubertal male mice were used in this experiment. Animals were divided into two groups, group 1 served as a control and received the corn oil and group 2 was treated with 200 mg/kg body weight (b.w.) of malathion for 30 days. In result, we found that the malathion administration led to the perturbation of biochemical markers and histopathological as well as molecular damages. These changes were accompanied by an oxidative alternation which was evaluated by lipoperoxidation process and MDA production, a diminution of sulfhydril groups (eSH) content and an antioxidant enzyme activities depletion such as total superoxide dismutase (SOD) and its isoforms, catalase (CAT) and glutathione peroxidase (GPx) in both kidney and liver tissues. These changes were related with many histopathological lesions in the liver and kidney tissues. More importantly, this insecticide clearly caused a decline in the GPx-4 expression in liver as well as GPx-3 in kidney. These data suggest that prepubertal male mice exposure to malathion showed a marked deregulation of liver and kidney functions.
Pathophysiology
INTRODUCTION The present study aims to investigate the protective effects of Rosemary (Rosmarinus... more INTRODUCTION The present study aims to investigate the protective effects of Rosemary (Rosmarinus officinalis L.) essential oils (ROEO) against alloxan-induced diabetes and oxidative stress in rats. METHODS The animals were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy+ROEO (H+ROEO) and Diabetic+ROEO (D+ROEO). RESULTS The use of GC/MS technique has allowed us to identify fifteen compounds in ROEO. We have found that alloxan administration induced hyperglycaemia, lipid metabolic parameters deregulation as well as liver and kidney dysfunctions. Alloxan administration has also induced an oxidative stress status as assessed by malondialdehyde (MDA) content increase, thiol groups (-SH) level decrease and antioxidant enzyme activities depletion such as catalase (CAT), total superoxide dismutase (SOD), Cu/Zn-SOD, Mn-SOD and Fe-SOD in both liver and kidney tissues. More importantly subacute (15days) ROEO administration has significantly corrected all biochemical alterations induced by alloxan intoxication. CONCLUSIONS We propose that Rosmarinus officinalis essential oils exhibit protective effects in alloxan-induced hyperglycaemia as well as protecting against liver and kidney oxidative stress in rats, reflecting its antioxidant properties.
Lipids in Health and Disease
Background: Massive alcohol drinking can lead to gastric ulcer. In the present study we investiga... more Background: Massive alcohol drinking can lead to gastric ulcer. In the present study we investigated the gastroprotective effect of Citrus sinensis peel aqueous extract (CSPE) and Hesperidin (H) in ethanol (EtOH) induced oxidative stress and peptic ulcer in rats. Methods: Seventy adult male Wistar rats were divided into seven groups of 10 each: control, EtOH (4 g/kg b.w.), EtOH + various doses of CSPE (100, 200 and 400 mg/kg, b.w.), EtOH + Hesperidin (50 mg/kg, p.o.) and EtOH + Omeprazole (OM, 20 mg/kg, p.o.). Animals were perorally (p.o.) pre-treated with CSPE during 15 days and intoxicated with a single oral administration of EtOH (4 g/kg b.w.) during 2 h. Gastric ulcer was induced in rats with a single dose of ethanol (EtOH). Ulcer index, gene expression of gastric cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), malondialdhyde (MDA), hydrogen peroxide H 2 O 2 and Thiol groups (−SH) content in stomach and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and gluthation peroxidise (GPx) were measured. Furthermore, histopathological examinations were performed. Results: The results showed that ethanol induced gastric damage, improving oxidative stress markers level such as MDA (121 ± 4.45 nmol/mg proteins) and H 2 O 2 (24.62 ± 1.04 μmol/mg proteins), increased pro-inflammatory cytokine (TNF-α level), as well as the expression of COX-2 in the ethanol group. However, a significant depletion of enzymatic and non-enzymatic antioxidants were observed, such as, GPx (72%), SOD (57.5%), CAT (41.6%) and-SH (50%). The lesions were associated with severe histopathological damage. The both Citrus sinensis peel aqueous extract (CSPE) and hesperidin significantly protect against all gastric damages caused by ethanol administration in rats. Conclusions: We propose that CSPE and hesperidin exhibit protective effects in EtOH-induced peptic ulcer in rat. This protection might be related in to part its antioxidant properties as well as its opposite effects on some studied intracellular mediators.
Journal of Medicinal Food, 2015
The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis ... more The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis essential oils (ROEO) and Lavandula stoechas essential oils (LSEO) against reproductive damage and oxidative stress in alloxan-induced diabetic male rats. Essential oil samples were obtained from the aerial parts of the plants by hydrodistillation and analyzed by the gas chromatography-mass spectrometry (GC-MS). Rats were divided into four groups: healthy control (HC); diabetic control (DC); healthy+ROEO (H+ROEO), healthy+LSEO (H+LSEO), diabetic+ROEO (D+ROEO), and diabetic+LSEO (D+LSEO). The use of GC-MS allowed to the identification of 15 and 22 compounds in ROEO and LSEO, respectively. In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test showed that ROEO and LSEO had an important antioxidant capacity. In vivo, we initially found that ROEO and LSEO treatment protected against the decrease in alloxan-induced body weight gain, relative reproductive organ weights, testosterone level, as well as sperm quality decline. On the other hand, we showed that alloxan administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as a depletion of sulfhydril group content (-SH) and antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in testis, epididymis, and sperm. More importantly, ROEO and LSEO treatment significantly protected against oxidative damage of the male reproductive organ systems in alloxan-induced diabetic rats. These findings suggested that ROEO and LSEO exerted a potential protective effect against alloxan-induced reproductive function damage and oxidative stress in male rat. The beneficial effect of ROEO and LSEO might be related, in part, to their antioxidant properties.
Journal of medicinal food, Jan 2, 2015
We aimed in the present study to investigate the hepato- and nephroprotective effects of Lavandul... more We aimed in the present study to investigate the hepato- and nephroprotective effects of Lavandula stoechas essential oils (LSEO) against malathion-induced oxidative stress in young male mice as well as the possible mechanism implicated in such protection. Animals were divided into eight groups of 12 each: Control, malathion (200 mg/kg b.w.); Various doses of LSEO (10, 30, and 50 mg/kg b.w.), malathion+various doses of LSEO. Malathion and LSEO were daily per orally (p.o.) administered by intragastric gavage during 30 days. We initially found that malathion treatment induced body weight gain decrease as well as a clear nephro- and hepatotoxicity as assessed by significant relative liver and kidney weight increase and related hemodynamic parameters deregulation. Malathion exposure of mice also induced a considerable perturbation of metabolic parameters. On the other hand, we showed that malathion administration was accompanied by an oxidative stress status assessed by an increase of m...
Iranian journal of basic medical sciences, 2014
The present study was undertaken to determine the effects of acute exposure to malathion on oxida... more The present study was undertaken to determine the effects of acute exposure to malathion on oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of adolescent male mice. Thirty two adolescent male mice at pubertal age were treated with 500 mg/kg body weight (BW) of malathion for three days. After exposure, biochemical markers and sperm analysis were evaluated and finally histological modifications of testis and sperm were assessed. Our data showed that treatment of male mice with malathion (500 mg/kg, BW) could lead to oxidative stress. Induced oxidative stress status can be assessed due to increased malondialdhyde (MDA) content, decreased thiol group content, as well as increased antioxidant enzyme activities. On the other hand, exposure to malathion at the pubertal age led to alteration of semen parameters; sperm production and percentage of motile sperm were decreased in the treated groups compared to the control. Furthe...
Toxicology and industrial health, Jan 23, 2013
The present study was undertaken to determine the effects of malathion exposure through maternal ... more The present study was undertaken to determine the effects of malathion exposure through maternal milk on oxidative stress, functional an metabolic parameters in kidney and liver of rat pups. We found that lactational exposure to malation (200 mg/kg, body weight (bw)) induced an oxidative stress status assessed by an increase in malondialdhyde (MDA) content, reflecting lipoperoxidation, a decrease in thiol groups' content as well as depletion of enzyme activities as a superoxide dismutase (SOD) and catalase (CAT) on postnatal days (Pnds) 21 and 51. Moreover, the current study showed that malathion induced liver and kidney dysfunctions demonstrated by considerable increase in phosphatase alkaline (PAL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as total and direct bilirubin, creatinine urea and acid uric contents. We also observed an increase in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and a...
RSC Adv., 2015
We aimed in the present work to evaluate the implication of oxidative stress in the toxicological... more We aimed in the present work to evaluate the implication of oxidative stress in the toxicological effects of subchronic malathion exposure on reproductive function in mice.
Lipids in Health and Disease, 2013
Background The present study described the phytochemical profile of Lavandula stoechas essential ... more Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cym...
Environmental Toxicology and Pharmacology, 2012
The organophosphorus (OP) pesticide malathion is a highly neurotoxic compound. Some studies have ... more The organophosphorus (OP) pesticide malathion is a highly neurotoxic compound. Some studies have reported neurotoxicity signs after in utero exposure to OP pesticides. However there is no evidence of the exclusive contribution of the lactational exposure to malathion as a possible cause of neurotoxicity in rats' pups. In this respect, we investigated the exclusive contribution of malathion (200 mg/kg, b.w.) exposure through maternal milk in rat pups during lactation. We evaluated the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as well as on biochemical parameters related to the oxidative stress such lipoperoxidation and antioxidant enzyme activities as superoxide dismutase (SOD) and catalase (CAT) in the brain, plasma and erythrocytes of rats' pups at 21st postnatal day (Pnd). These parameters were also evaluated in the same tissues but at 51 Pnd. Our results showed that the malathion exposure during lactation induced a high inhibitory effect of the brain, plasma and erythrocyte AChE and BChE activities in rat pups. Many changes were observed in the biochemical parameters related to the oxidative stress for pups brain, plasma and erythrocyte. The present study shows, for the first time, that the exposure of postnatal pups to malathion via lactation inhibits the activity of brain, plasma and erythrocytes cholinesterase in the pups. These findings suggest that malathion exposure during lactation induced a cerebral alterations and oxidative stress in rat pups.
Lipids in Health and Disease
Background: The current study was conducted to evaluate the protective effect of Lavandula stoech... more Background: The current study was conducted to evaluate the protective effect of Lavandula stoechas essential oils (LSEO) against malathion (M) exposure-caused reprotoxicity in male mice as well as the possible mechanisms implicated in such protection. Methods: Six-eight-week-old male mice weighting 25-30 g were used and divided into four groups: normalcontrol, LSEO (50 mg/kg, b.w.), malathion (200 mg/kg, b.w.) and malathion + LSEO treated mice. Malathion was emulsioned in corn oil and per orally administered for 30 days. LSEO was daily administrated during the same period. LSEO chemical identification was done by Gas chromatography-mass spectrometry (GC-MS). Reproductiondamages and LSEO-benefits were assessed using histopathological, biochemical and steroidogenesis gene expression disruptions and improvements. Results: The GC-MS analysis, allowed to the identification of 25 bioactive compounds in MCEO. In vivo, we firstly found that malathion exposure induced a clear reprotoxicity as assessed by a significant-decrease (P < 0.05) of testis/epididymis relative weights, serum testosterone level and reproductive performance. Malathion also produced lipoperoxidation, thiol (-SH) groups decrease as well as a significant-depletion (P < 0.05) of antioxidant enzyme activities such as catalase (CAT) and glutathione peroxidase (GPx), total superoxide dismutase (SOD), Cu/Zn-SOD and Mn-SOD in testis and epididymis. The histopathological examination showed marked change in both studied tissues. All these biochemical and structural changes were significantly (P < 0.05) corrected by LSEO coadministration. More importantly, malathion exposure remarkably (P < 0.05) down-regulated the expression of StAR gene as well as, the mRNA levels of P450scc, 3ßHSD and 17ß-HSD, while LSEO-administration strangely protected against steroidogenesis disruption. Conclusions: The potential protective effects of LSEO against malathion-induced reprotoxicity and oxidative stress might be partially to its antioxidant properties as well as its opposite effect against some gene expression involved in the steroidogenesis.
Journal of Hazardous Materials, 2009
Malathion is a widely organphosphorus insecticide used in agriculture, which shows strong insecti... more Malathion is a widely organphosphorus insecticide used in agriculture, which shows strong insecticidal effects. However, the use of this insecticide leads to disruption in metabolic pathways. The aim of this study is to evaluate the acute effects of malathion on metabolic parameters in Wistar rats. Malathion was administered orally to rats at a dose of 400 mg/kg body weight dissolved in corn oil. Glucidic and lipidic status were analyzed in plasma, cholinesterase activities were also determined. Malathion induces a transitory hyperglycaemia which correlated with depletion on glycogen content. Plasma triglycerides and LDL level increased significantly in malathion treated-rats. HDL rate was unchanged and cholesterol plasma content decrease transitory but rapidly reached a normal level. Results of this study indicate, clearly, that malathion in acute exposure leads to a disruption of lipid metabolism with an enhancement in LDL and triglyceride contents and may play an important role in the development of atherosclerosis and cardiovascular disease. Disruption in plasma lipid profile may leads to a kind of insulin resistance which results in hyperglycaemia.
RSC Adv., 2016
Malathion (M) is an organophosphorus pesticide of utmost concern because of its adverse effects o... more Malathion (M) is an organophosphorus pesticide of utmost concern because of its adverse effects on non-targeted organisms.
Toxicology Reports
The present study was undertaken to determine the effects of malathion exposure on oxidative stre... more The present study was undertaken to determine the effects of malathion exposure on oxidative stress, functional and metabolic parameters in kidney and liver of prepubertal male mice. For this reason, two separated groups of prepubertal male mice were used in this experiment. Animals were divided into two groups, group 1 served as a control and received the corn oil and group 2 was treated with 200 mg/kg body weight (b.w.) of malathion for 30 days. In result, we found that the malathion administration led to the perturbation of biochemical markers and histopathological as well as molecular damages. These changes were accompanied by an oxidative alternation which was evaluated by lipoperoxidation process and MDA production, a diminution of sulfhydril groups (eSH) content and an antioxidant enzyme activities depletion such as total superoxide dismutase (SOD) and its isoforms, catalase (CAT) and glutathione peroxidase (GPx) in both kidney and liver tissues. These changes were related with many histopathological lesions in the liver and kidney tissues. More importantly, this insecticide clearly caused a decline in the GPx-4 expression in liver as well as GPx-3 in kidney. These data suggest that prepubertal male mice exposure to malathion showed a marked deregulation of liver and kidney functions.
Pathophysiology
INTRODUCTION The present study aims to investigate the protective effects of Rosemary (Rosmarinus... more INTRODUCTION The present study aims to investigate the protective effects of Rosemary (Rosmarinus officinalis L.) essential oils (ROEO) against alloxan-induced diabetes and oxidative stress in rats. METHODS The animals were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy+ROEO (H+ROEO) and Diabetic+ROEO (D+ROEO). RESULTS The use of GC/MS technique has allowed us to identify fifteen compounds in ROEO. We have found that alloxan administration induced hyperglycaemia, lipid metabolic parameters deregulation as well as liver and kidney dysfunctions. Alloxan administration has also induced an oxidative stress status as assessed by malondialdehyde (MDA) content increase, thiol groups (-SH) level decrease and antioxidant enzyme activities depletion such as catalase (CAT), total superoxide dismutase (SOD), Cu/Zn-SOD, Mn-SOD and Fe-SOD in both liver and kidney tissues. More importantly subacute (15days) ROEO administration has significantly corrected all biochemical alterations induced by alloxan intoxication. CONCLUSIONS We propose that Rosmarinus officinalis essential oils exhibit protective effects in alloxan-induced hyperglycaemia as well as protecting against liver and kidney oxidative stress in rats, reflecting its antioxidant properties.
Lipids in Health and Disease
Background: Massive alcohol drinking can lead to gastric ulcer. In the present study we investiga... more Background: Massive alcohol drinking can lead to gastric ulcer. In the present study we investigated the gastroprotective effect of Citrus sinensis peel aqueous extract (CSPE) and Hesperidin (H) in ethanol (EtOH) induced oxidative stress and peptic ulcer in rats. Methods: Seventy adult male Wistar rats were divided into seven groups of 10 each: control, EtOH (4 g/kg b.w.), EtOH + various doses of CSPE (100, 200 and 400 mg/kg, b.w.), EtOH + Hesperidin (50 mg/kg, p.o.) and EtOH + Omeprazole (OM, 20 mg/kg, p.o.). Animals were perorally (p.o.) pre-treated with CSPE during 15 days and intoxicated with a single oral administration of EtOH (4 g/kg b.w.) during 2 h. Gastric ulcer was induced in rats with a single dose of ethanol (EtOH). Ulcer index, gene expression of gastric cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), malondialdhyde (MDA), hydrogen peroxide H 2 O 2 and Thiol groups (−SH) content in stomach and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and gluthation peroxidise (GPx) were measured. Furthermore, histopathological examinations were performed. Results: The results showed that ethanol induced gastric damage, improving oxidative stress markers level such as MDA (121 ± 4.45 nmol/mg proteins) and H 2 O 2 (24.62 ± 1.04 μmol/mg proteins), increased pro-inflammatory cytokine (TNF-α level), as well as the expression of COX-2 in the ethanol group. However, a significant depletion of enzymatic and non-enzymatic antioxidants were observed, such as, GPx (72%), SOD (57.5%), CAT (41.6%) and-SH (50%). The lesions were associated with severe histopathological damage. The both Citrus sinensis peel aqueous extract (CSPE) and hesperidin significantly protect against all gastric damages caused by ethanol administration in rats. Conclusions: We propose that CSPE and hesperidin exhibit protective effects in EtOH-induced peptic ulcer in rat. This protection might be related in to part its antioxidant properties as well as its opposite effects on some studied intracellular mediators.
Journal of Medicinal Food, 2015
The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis ... more The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis essential oils (ROEO) and Lavandula stoechas essential oils (LSEO) against reproductive damage and oxidative stress in alloxan-induced diabetic male rats. Essential oil samples were obtained from the aerial parts of the plants by hydrodistillation and analyzed by the gas chromatography-mass spectrometry (GC-MS). Rats were divided into four groups: healthy control (HC); diabetic control (DC); healthy+ROEO (H+ROEO), healthy+LSEO (H+LSEO), diabetic+ROEO (D+ROEO), and diabetic+LSEO (D+LSEO). The use of GC-MS allowed to the identification of 15 and 22 compounds in ROEO and LSEO, respectively. In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test showed that ROEO and LSEO had an important antioxidant capacity. In vivo, we initially found that ROEO and LSEO treatment protected against the decrease in alloxan-induced body weight gain, relative reproductive organ weights, testosterone level, as well as sperm quality decline. On the other hand, we showed that alloxan administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as a depletion of sulfhydril group content (-SH) and antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in testis, epididymis, and sperm. More importantly, ROEO and LSEO treatment significantly protected against oxidative damage of the male reproductive organ systems in alloxan-induced diabetic rats. These findings suggested that ROEO and LSEO exerted a potential protective effect against alloxan-induced reproductive function damage and oxidative stress in male rat. The beneficial effect of ROEO and LSEO might be related, in part, to their antioxidant properties.
Journal of medicinal food, Jan 2, 2015
We aimed in the present study to investigate the hepato- and nephroprotective effects of Lavandul... more We aimed in the present study to investigate the hepato- and nephroprotective effects of Lavandula stoechas essential oils (LSEO) against malathion-induced oxidative stress in young male mice as well as the possible mechanism implicated in such protection. Animals were divided into eight groups of 12 each: Control, malathion (200 mg/kg b.w.); Various doses of LSEO (10, 30, and 50 mg/kg b.w.), malathion+various doses of LSEO. Malathion and LSEO were daily per orally (p.o.) administered by intragastric gavage during 30 days. We initially found that malathion treatment induced body weight gain decrease as well as a clear nephro- and hepatotoxicity as assessed by significant relative liver and kidney weight increase and related hemodynamic parameters deregulation. Malathion exposure of mice also induced a considerable perturbation of metabolic parameters. On the other hand, we showed that malathion administration was accompanied by an oxidative stress status assessed by an increase of m...
Iranian journal of basic medical sciences, 2014
The present study was undertaken to determine the effects of acute exposure to malathion on oxida... more The present study was undertaken to determine the effects of acute exposure to malathion on oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of adolescent male mice. Thirty two adolescent male mice at pubertal age were treated with 500 mg/kg body weight (BW) of malathion for three days. After exposure, biochemical markers and sperm analysis were evaluated and finally histological modifications of testis and sperm were assessed. Our data showed that treatment of male mice with malathion (500 mg/kg, BW) could lead to oxidative stress. Induced oxidative stress status can be assessed due to increased malondialdhyde (MDA) content, decreased thiol group content, as well as increased antioxidant enzyme activities. On the other hand, exposure to malathion at the pubertal age led to alteration of semen parameters; sperm production and percentage of motile sperm were decreased in the treated groups compared to the control. Furthe...
Toxicology and industrial health, Jan 23, 2013
The present study was undertaken to determine the effects of malathion exposure through maternal ... more The present study was undertaken to determine the effects of malathion exposure through maternal milk on oxidative stress, functional an metabolic parameters in kidney and liver of rat pups. We found that lactational exposure to malation (200 mg/kg, body weight (bw)) induced an oxidative stress status assessed by an increase in malondialdhyde (MDA) content, reflecting lipoperoxidation, a decrease in thiol groups' content as well as depletion of enzyme activities as a superoxide dismutase (SOD) and catalase (CAT) on postnatal days (Pnds) 21 and 51. Moreover, the current study showed that malathion induced liver and kidney dysfunctions demonstrated by considerable increase in phosphatase alkaline (PAL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as total and direct bilirubin, creatinine urea and acid uric contents. We also observed an increase in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and a...
RSC Adv., 2015
We aimed in the present work to evaluate the implication of oxidative stress in the toxicological... more We aimed in the present work to evaluate the implication of oxidative stress in the toxicological effects of subchronic malathion exposure on reproductive function in mice.
Lipids in Health and Disease, 2013
Background The present study described the phytochemical profile of Lavandula stoechas essential ... more Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cym...
Environmental Toxicology and Pharmacology, 2012
The organophosphorus (OP) pesticide malathion is a highly neurotoxic compound. Some studies have ... more The organophosphorus (OP) pesticide malathion is a highly neurotoxic compound. Some studies have reported neurotoxicity signs after in utero exposure to OP pesticides. However there is no evidence of the exclusive contribution of the lactational exposure to malathion as a possible cause of neurotoxicity in rats&amp;#39; pups. In this respect, we investigated the exclusive contribution of malathion (200 mg/kg, b.w.) exposure through maternal milk in rat pups during lactation. We evaluated the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as well as on biochemical parameters related to the oxidative stress such lipoperoxidation and antioxidant enzyme activities as superoxide dismutase (SOD) and catalase (CAT) in the brain, plasma and erythrocytes of rats&amp;#39; pups at 21st postnatal day (Pnd). These parameters were also evaluated in the same tissues but at 51 Pnd. Our results showed that the malathion exposure during lactation induced a high inhibitory effect of the brain, plasma and erythrocyte AChE and BChE activities in rat pups. Many changes were observed in the biochemical parameters related to the oxidative stress for pups brain, plasma and erythrocyte. The present study shows, for the first time, that the exposure of postnatal pups to malathion via lactation inhibits the activity of brain, plasma and erythrocytes cholinesterase in the pups. These findings suggest that malathion exposure during lactation induced a cerebral alterations and oxidative stress in rat pups.
Lipids in Health and Disease
Background: The current study was conducted to evaluate the protective effect of Lavandula stoech... more Background: The current study was conducted to evaluate the protective effect of Lavandula stoechas essential oils (LSEO) against malathion (M) exposure-caused reprotoxicity in male mice as well as the possible mechanisms implicated in such protection. Methods: Six-eight-week-old male mice weighting 25-30 g were used and divided into four groups: normalcontrol, LSEO (50 mg/kg, b.w.), malathion (200 mg/kg, b.w.) and malathion + LSEO treated mice. Malathion was emulsioned in corn oil and per orally administered for 30 days. LSEO was daily administrated during the same period. LSEO chemical identification was done by Gas chromatography-mass spectrometry (GC-MS). Reproductiondamages and LSEO-benefits were assessed using histopathological, biochemical and steroidogenesis gene expression disruptions and improvements. Results: The GC-MS analysis, allowed to the identification of 25 bioactive compounds in MCEO. In vivo, we firstly found that malathion exposure induced a clear reprotoxicity as assessed by a significant-decrease (P < 0.05) of testis/epididymis relative weights, serum testosterone level and reproductive performance. Malathion also produced lipoperoxidation, thiol (-SH) groups decrease as well as a significant-depletion (P < 0.05) of antioxidant enzyme activities such as catalase (CAT) and glutathione peroxidase (GPx), total superoxide dismutase (SOD), Cu/Zn-SOD and Mn-SOD in testis and epididymis. The histopathological examination showed marked change in both studied tissues. All these biochemical and structural changes were significantly (P < 0.05) corrected by LSEO coadministration. More importantly, malathion exposure remarkably (P < 0.05) down-regulated the expression of StAR gene as well as, the mRNA levels of P450scc, 3ßHSD and 17ß-HSD, while LSEO-administration strangely protected against steroidogenesis disruption. Conclusions: The potential protective effects of LSEO against malathion-induced reprotoxicity and oxidative stress might be partially to its antioxidant properties as well as its opposite effect against some gene expression involved in the steroidogenesis.
Journal of Hazardous Materials, 2009
Malathion is a widely organphosphorus insecticide used in agriculture, which shows strong insecti... more Malathion is a widely organphosphorus insecticide used in agriculture, which shows strong insecticidal effects. However, the use of this insecticide leads to disruption in metabolic pathways. The aim of this study is to evaluate the acute effects of malathion on metabolic parameters in Wistar rats. Malathion was administered orally to rats at a dose of 400 mg/kg body weight dissolved in corn oil. Glucidic and lipidic status were analyzed in plasma, cholinesterase activities were also determined. Malathion induces a transitory hyperglycaemia which correlated with depletion on glycogen content. Plasma triglycerides and LDL level increased significantly in malathion treated-rats. HDL rate was unchanged and cholesterol plasma content decrease transitory but rapidly reached a normal level. Results of this study indicate, clearly, that malathion in acute exposure leads to a disruption of lipid metabolism with an enhancement in LDL and triglyceride contents and may play an important role in the development of atherosclerosis and cardiovascular disease. Disruption in plasma lipid profile may leads to a kind of insulin resistance which results in hyperglycaemia.