Sneha Sundaresan - Academia.edu (original) (raw)
Uploads
Papers by Sneha Sundaresan
2023 IEEE Transportation Electrification Conference & Expo (ITEC)
2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON)
2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON)
Journal of Low Power Electronics and Applications
This paper presents a systematic approach to extract electrical equivalent circuit model (ECM) pa... more This paper presents a systematic approach to extract electrical equivalent circuit model (ECM) parameters of the Li-ion battery (LIB) based on electrochemical impedance spectroscopy (EIS). Particularly, the proposed approach is suitable to practical applications where the measurement noise can be significant, resulting in a low signal-to-noise ratio. Given the EIS measurements, the proposed approach can be used to obtain the ECM parameters of a battery. Then, a time domain approach is employed to validate the accuracy of estimated ECM parameters. In order to investigate whether the ECM parameters vary as the battery’s state of charge (SOC) changes, the EIS experiment was repeated at nine different SOCs. The experimental results show that the proposed approach is consistent in estimating the ECM parameters. It is found that the battery parameters, such as internal resistance, capacitance and inductance, remain the same for practical SOC ranges starting from 20% until 90%. The ECM par...
2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON)
2022 IEEE Electrical Power and Energy Conference (EPEC)
Energies
Battery management systems depend on open circuit voltage (OCV) characterization for state of cha... more Battery management systems depend on open circuit voltage (OCV) characterization for state of charge (SOC) estimation in real time. The traditional approach to OCV-SOC characterization involves collecting OCV-SOC data from sample battery cells and then fitting a polynomial model to this data. The parameters of these polynomial models are known as the OCV-parameters, or OCV-SOC parameters, in battery management systems and are used for real-time SOC estimation. Even though traditional OCV-SOC characterization approaches are able to abstract the OCV-SOC behavior of a battery in a few parameters, these parameters are only applicable in high precision computing systems. However, many practical battery applications do not have access to high-precision computing resources. The typical approach in a low-precision system is to round the OCV-parameters. This paper highlights the perils of rounding the OCV parameters and proposes an alternative OCV-SOC table. First, several existing OCV-SOC p...
Energies
A battery management system (BMS) plays a crucial role to ensure the safety, efficiency, and reli... more A battery management system (BMS) plays a crucial role to ensure the safety, efficiency, and reliability of a rechargeable Li-ion battery pack. State of charge (SOC) estimation is an important operation within a BMS. Estimated SOC is required in several BMS operations, such as remaining power and mileage estimation, battery capacity estimation, charge termination, and cell balancing. The open-circuit voltage (OCV) look-up-based SOC estimation approach is widely used in battery management systems. For OCV lookup, the OCV–SOC characteristic is empirically measured and parameterized a priori. The literature shows numerous OCV–SOC models and approaches to characterize them and use them in SOC estimation. However, the selection of an OCV–SOC model must consider several factors: (i) Modeling errors due to approximations, age/temperature effects, and cell-to-cell variations; (ii) Likelihood and severity of errors when the OCV–SOC parameters are rounded; (iii) Computing system requirements ...
2022 IEEE Electrical Power and Energy Conference (EPEC)
Energies
Battery management systems (BMS) are important for ensuring the safety, efficiency and reliabilit... more Battery management systems (BMS) are important for ensuring the safety, efficiency and reliability of a battery pack. Estimating the internal equivalent circuit model (ECM) parameters of a battery, such as the internal open circuit voltage, battery resistance and relaxation parameters, is a crucial requirement in BMSs. Numerous approaches to estimating ECM parameters have been reported in the literature. However, existing approaches consider ECM identification as a joint estimation problem that estimates the state of charge together with the ECM parameters. In this paper, an approach is presented to decouple the problem into ECM identification alone. Using the proposed approach, the internal open circuit voltage and the ECM parameters can be estimated without requiring the knowledge of the state of charge of the battery. The proposed approach is applied to estimate the open circuit voltage and internal resistance of a battery.
2023 IEEE Transportation Electrification Conference & Expo (ITEC)
2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON)
2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON)
Journal of Low Power Electronics and Applications
This paper presents a systematic approach to extract electrical equivalent circuit model (ECM) pa... more This paper presents a systematic approach to extract electrical equivalent circuit model (ECM) parameters of the Li-ion battery (LIB) based on electrochemical impedance spectroscopy (EIS). Particularly, the proposed approach is suitable to practical applications where the measurement noise can be significant, resulting in a low signal-to-noise ratio. Given the EIS measurements, the proposed approach can be used to obtain the ECM parameters of a battery. Then, a time domain approach is employed to validate the accuracy of estimated ECM parameters. In order to investigate whether the ECM parameters vary as the battery’s state of charge (SOC) changes, the EIS experiment was repeated at nine different SOCs. The experimental results show that the proposed approach is consistent in estimating the ECM parameters. It is found that the battery parameters, such as internal resistance, capacitance and inductance, remain the same for practical SOC ranges starting from 20% until 90%. The ECM par...
2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON)
2022 IEEE Electrical Power and Energy Conference (EPEC)
Energies
Battery management systems depend on open circuit voltage (OCV) characterization for state of cha... more Battery management systems depend on open circuit voltage (OCV) characterization for state of charge (SOC) estimation in real time. The traditional approach to OCV-SOC characterization involves collecting OCV-SOC data from sample battery cells and then fitting a polynomial model to this data. The parameters of these polynomial models are known as the OCV-parameters, or OCV-SOC parameters, in battery management systems and are used for real-time SOC estimation. Even though traditional OCV-SOC characterization approaches are able to abstract the OCV-SOC behavior of a battery in a few parameters, these parameters are only applicable in high precision computing systems. However, many practical battery applications do not have access to high-precision computing resources. The typical approach in a low-precision system is to round the OCV-parameters. This paper highlights the perils of rounding the OCV parameters and proposes an alternative OCV-SOC table. First, several existing OCV-SOC p...
Energies
A battery management system (BMS) plays a crucial role to ensure the safety, efficiency, and reli... more A battery management system (BMS) plays a crucial role to ensure the safety, efficiency, and reliability of a rechargeable Li-ion battery pack. State of charge (SOC) estimation is an important operation within a BMS. Estimated SOC is required in several BMS operations, such as remaining power and mileage estimation, battery capacity estimation, charge termination, and cell balancing. The open-circuit voltage (OCV) look-up-based SOC estimation approach is widely used in battery management systems. For OCV lookup, the OCV–SOC characteristic is empirically measured and parameterized a priori. The literature shows numerous OCV–SOC models and approaches to characterize them and use them in SOC estimation. However, the selection of an OCV–SOC model must consider several factors: (i) Modeling errors due to approximations, age/temperature effects, and cell-to-cell variations; (ii) Likelihood and severity of errors when the OCV–SOC parameters are rounded; (iii) Computing system requirements ...
2022 IEEE Electrical Power and Energy Conference (EPEC)
Energies
Battery management systems (BMS) are important for ensuring the safety, efficiency and reliabilit... more Battery management systems (BMS) are important for ensuring the safety, efficiency and reliability of a battery pack. Estimating the internal equivalent circuit model (ECM) parameters of a battery, such as the internal open circuit voltage, battery resistance and relaxation parameters, is a crucial requirement in BMSs. Numerous approaches to estimating ECM parameters have been reported in the literature. However, existing approaches consider ECM identification as a joint estimation problem that estimates the state of charge together with the ECM parameters. In this paper, an approach is presented to decouple the problem into ECM identification alone. Using the proposed approach, the internal open circuit voltage and the ECM parameters can be estimated without requiring the knowledge of the state of charge of the battery. The proposed approach is applied to estimate the open circuit voltage and internal resistance of a battery.