Stanisław Anweiler - Academia.edu (original) (raw)
Papers by Stanisław Anweiler
The article presents the method of determining the value and the power course for a single blade ... more The article presents the method of determining the value and the power course for a single blade and the whole turbines with a VAWT, depending on the number of blades used. The calculations used data from coefficient of resistance measurements from the angle of the anemometer blade profile to the wind direction, and measurements of forces acting
Energies, 2021
The drive to increase the efficiency of processes based on two-phase flow demands the better prec... more The drive to increase the efficiency of processes based on two-phase flow demands the better precision and selection of boundary conditions in the process’ control. The two-phase flow pattern affects the phenomena of momentum, heat, and mass transfer. It becomes necessary to shift from its qualitative to quantitative evaluation. The description of the stationary structure has long been used in structural studies applied to metals and alloys. The description of a gas–liquid two-phase mixture is difficult because it changes in time and space. This paper presents a study of the precise determination of two-phase flow patterns based on stereological parameters analysis. The research area is shown against the flow map proposed by other researchers. The experiment was taken in the thin clear channel with dimensions of W = 50 × H = 1200 × T = 5 mm. The test method is based on the visualization of a two-phase air–water adiabatic flow pattern in the rectangular channel where superficial air ...
Thermal Science
Energy efficiency is a key issue of sustainable development. During the design of industrial devi... more Energy efficiency is a key issue of sustainable development. During the design of industrial devices, it strives to achieve the highest possible energy efficiency. In the industrial systems, two-phase flow is a difficult task, especially the prediction, and maintenance of the two-phase flow regime. That is why this research proposes the evaluation and choice of an algorithm that will give a hint of the device design for which the hydrodynamic conditions of the two-phase mixture flow may be evalu-ated. The tests were carried out in a rectangular vertical narrow channel, as this type of device is in common use. The work aimed to show which algorithm is better for such evaluation. Parameters such as pressure drop, heat, mass, and momentum transfer are influenced by the phase velocity field. Still, various models are used for the determination of the velocity field. Therefore, there is a problem of choosing a model that will give the results closest to the real conditions. Flow visualiz...
Thermal Science
This paper is a description of the evolution of long-term research work on two-phase flows using ... more This paper is a description of the evolution of long-term research work on two-phase flows using parallel studies of dynamic image analysis and stochastic processes analysis. The state of current knowledge on the research of gas-solid and gas-liquid systems as well as a review of research relating to these issues are also presented. The work grants the principles of videogrammetric surveys based on stochastic analysis for a series of photographs taken with video techniques. The method applies the analysis of changes in selected features and parameters in the time domain. Especially in application to multiphase gas-liquid and solid-gas mixture flows, which are characterized by strong variabilities. Parameters such as flow patterns of the mixture were determined as time-space distributions of phase concentration, displacement velocities of separated two-phase structures, volume partitions of phases, and velocity field distributions are evaluated. The changes of certain parameters char...
Energies
This paper presents the results of research describing the thermokinetics of brown coal’s (lignit... more This paper presents the results of research describing the thermokinetics of brown coal’s (lignite) drying process in a fountain-bubble fluidized bed dryer. The drying medium was atmospheric air of a variable temperature in subsequent tests, which ranged from 27 to 70 °C. This paper presents the results of many experimental studies for two different types of brown coal: xylite, from the Bełchatów mine, and earth, from the Turów mine. The two types of brown coal are used to assess different sized coal particles and different air drying temperatures. The functions parameterizing the moisture content of dried coal at different air drying temperatures at any given time are also presented.
E3S Web of Conferences
The paper presents research related to the operation of an ground-source heat pump with a thermal... more The paper presents research related to the operation of an ground-source heat pump with a thermal output of 16.85 kW and an electrical power of 3.72 kW in various conditions, both from the mechanical and thermodynamic perspective. The publication contains the results of research on a selected heat pump model with an R410a refrigerant carried out in an accredited laboratory in the Czech Republic. Detailed analysis of the data in terms of changes in the COP coefficient for two heating water temperatures was carried out (35°C and 55°C) and in the range of outdoor air temperature from -10°C to 15°C every 1°C. The analysis was also carried out to determine the efficiency of the heat pump depending on the parameters of the heat source. Devices of this type, enabling effective use of environmental available thermal energy with low operating costs, meet increasingly stringent environmental protection requirements. Significant costs of heating buildings are one of the main reasons for the ne...
E3S Web of Conferences
This paper presents the design and implementation of device for remote and automatic monitoring o... more This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.
E3S Web of Conferences
Technology of wind exploitation has been applied widely all over the world and has already reache... more Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
Energies
This paper presents experimental studies on the optimization of two-phase fluid flow in an airlif... more This paper presents experimental studies on the optimization of two-phase fluid flow in an airlift pump. Airlift pumps, also known as mammoth pumps, are devices applied for vertical transport of liquids with the use of gas. Their operating principle involves the existence of a density gradient. This paper reports the results of experimental studies into the hydrodynamic effects of the airlift pump. The studies involved optical imaging of two-phase gas-liquid flow in a riser pipe. The visualization was performed with high-speed visualization techniques. The studies used a transparent model of airlift pump with a rectangular cross-section of the riser. The assessment of the airlift pump operation is based on the image grey-level analysis to provide the identification of two-phase flow regimes. The scope of the study also involved the determination of void fraction and pressure drops. The tests were carried out in a channel with dimensions 35 × 20 × 2045 mm with the gas flux range 0.2–...
Flow Measurement and Instrumentation
Abstract Two-phase flow regime is an important industrial process phenomenon. Pressure drops, vol... more Abstract Two-phase flow regime is an important industrial process phenomenon. Pressure drops, volume fraction and flow pattern are the most significant parameters describing the flow hydrodynamics of the two-phase mixtures. Authors propose a qualitative and quantitative description of the two-phase fluid flow structure, provided by the dynamic image analysis method. Method is based on high-speed visualization, stereological techniques and videogrammetry with grey level analysis and cross-correlation of signals. The study was conducted on a rectangular, vertical channel, with air-water co-current upwards flow. Dimensions of the channel are 5 × 50 × 1200 mm. The gas phase flux is 0.01 dm3/h and 0.16 dm3/h. The liquid phase flux is set to 0.01 dm3/h. The measurements and calculations were based on the stereology techniques, the Zuber-Finley and Mishima-Hibiki drift-flux model, and the grey level of the image. Two-phase flow parameters such as the void fraction, interfacial surface, free distance between objects, number of objects, average object size, drift and distribution coefficient was determined. Parameters were obtained as a function of time. Comparison of the image analysis results with the drift-flux models was made. To summarize, developed dynamic image analysis, provides information suitable for the assessment and reconstruction of the two-phase flow structure, which can be used for automatic process control.
Chinese Journal of Chemical Engineering
Abstract This study involved the analysis and characterization of the multiphase flow phenomenon ... more Abstract This study involved the analysis and characterization of the multiphase flow phenomenon inside the lower stage cyclone separator used in the clinker burning process. The analysis was performed using both CFD and experimental research methods. Very few studies are devoted to such types of cyclone separators, which in addition to their basic functions are also responsible for the technological process. Due to the atypical working conditions of these cyclone separators, they are characterized with a complex geometry, which significantly differs from that of the traditional separators. Furthermore, the evaluation of the accuracy and level of reliability of the two models of turbulence closure—k-e RNG and RSM (RANS), and the LES. The results obtained led to the conclusion that for the lower stage cyclone separators, the LES model proved to be the most accurate (both in the case of forecasting the separation efficiency and pressure drop). The performance parameter (in particular the separation efficiency) values obtained for the RSM model were also characterized by high accuracy. The k-e RNG model was characterized by significantly larger deviations.
Journal of Sustainable Development of Energy, Water and Environment Systems
Sustainable economic development requires the use of renewable energy sources in a rational and t... more Sustainable economic development requires the use of renewable energy sources in a rational and thoughtful way. In Polish conditions the use of several types of renewable energy sources on a single setup is a new issue. In particular, hybrid devices in conjunction with intelligent energy systems, such as lighting systems are generally not used. Therefore, the Polish energy production still relies on the burning of coal. Despite their advantages, renewable energy sources are characterized by seasonality and considerable instability. Access to renewable energy varies daily and seasonally, hence activities promoting the use of autonomous, hybrid power systems must be intensified. The presented research aims at the development of the Autonomous Power Supply (APS) system based on the so-called energy mix. Such a system works in an isolated arrangement and serves to reliably supply electricity from renewable sources for small residential or public utility devices in an urban area. Systems with up to 3 kW power consist of modules, whose modular design allows the combination of various power configurations and types of renewable energy used. The basic system consists of a primary power source, additional power source, emergency power source, energy storage device, weather station and controller. The energy mix depends on the geographical location of the system. The emergency source can be implemented as an on-grid connector or fuel power generator with the participation of 100% until the primary or accessory power source failure is removed. The energy storage system consists of batteries or supercapacitors. The proposed system can be combined to create a local network that automatically responds to energy shortages in various network nodes by adjusting the supply of electricity within the network depending on its needs. For Poland realistic solutions in this article are the new and modern answer to these requirements.
Journal of Environmental Management, 2017
Many industries use fluidization of solid particles for energy efficiency or environmental friend... more Many industries use fluidization of solid particles for energy efficiency or environmental friendly process development, and this paper introduces research techniques developed for investigating gas-particle systems At present there is plenty of room for refining gas-particle fluidization process. With the rapidly rising application of mathematical modelling, real time visualization of processes will be widely used for validation of those models in the near future. In presented research, photogrammetry, as a part of close range vision metrology, has been expanded to allow dynamic space and time analysis of the phase concentration distribution inside fluidization devices. A novel videogrammetry method was created with additional stochastic process analysis for detailed frequency and amplitude characteristics. Videogrammetry was used for the assessment of flow regimes, which were held in various types of fluidization apparatuses. Classic bubbling, jet-spouted and fast circulating fluidization processes were explored under the investigation. Videogrammetry is non-invasive flow regime recognition method, which enables detailed research of gas-particle fluidization phenomena. Until now, there were no comparative studies for three different types of fluidization processes with the use of one complex approach. Developed videogrammetric method consists of the flow structure visualization and dynamic image analysis. The analysed feature is the grey level of the image in time domain, and grey level signals were analysed with the use of autocorrelation function and power density function. The results are presented as images, plots and a flow map. Efficiency of the method was tested by comparison of real observed flow structures to the reconstructed flow structures and the recognition accuracy reached 92%.
Thermal Science, 2016
Paper describes a novel method for two-phase gas-solid flow structure validation in fluidized bed... more Paper describes a novel method for two-phase gas-solid flow structure validation in fluidized bed reactors. Investigation is based on application of stereology techniques. This is an innovative approach in the field of fluidization phenomena research. Study is focused on the analysis of flow structure images, obtained with high-speed visualization of the fluidization process. Fluidization is conducted in transparent narrow channel, where plastic balls are fluidized by air. Applied stereological analysis is grounded on the linear method and on the method of random and directed secants. This enables 2-dimensional image measurement and 3-dimensional stereological extrapolation. The major result is that for each two-phase gas-solid flow structure a set of stereological parameters exists. This enables quantification of the process. It has been found that the observation of inter-relation of all stereological parameters, during the changing of the flow structure, can be used for system co...
The article presents the method of determining the value and the power course for a single blade ... more The article presents the method of determining the value and the power course for a single blade and the whole turbines with a VAWT, depending on the number of blades used. The calculations used data from coefficient of resistance measurements from the angle of the anemometer blade profile to the wind direction, and measurements of forces acting
Energies, 2021
The drive to increase the efficiency of processes based on two-phase flow demands the better prec... more The drive to increase the efficiency of processes based on two-phase flow demands the better precision and selection of boundary conditions in the process’ control. The two-phase flow pattern affects the phenomena of momentum, heat, and mass transfer. It becomes necessary to shift from its qualitative to quantitative evaluation. The description of the stationary structure has long been used in structural studies applied to metals and alloys. The description of a gas–liquid two-phase mixture is difficult because it changes in time and space. This paper presents a study of the precise determination of two-phase flow patterns based on stereological parameters analysis. The research area is shown against the flow map proposed by other researchers. The experiment was taken in the thin clear channel with dimensions of W = 50 × H = 1200 × T = 5 mm. The test method is based on the visualization of a two-phase air–water adiabatic flow pattern in the rectangular channel where superficial air ...
Thermal Science
Energy efficiency is a key issue of sustainable development. During the design of industrial devi... more Energy efficiency is a key issue of sustainable development. During the design of industrial devices, it strives to achieve the highest possible energy efficiency. In the industrial systems, two-phase flow is a difficult task, especially the prediction, and maintenance of the two-phase flow regime. That is why this research proposes the evaluation and choice of an algorithm that will give a hint of the device design for which the hydrodynamic conditions of the two-phase mixture flow may be evalu-ated. The tests were carried out in a rectangular vertical narrow channel, as this type of device is in common use. The work aimed to show which algorithm is better for such evaluation. Parameters such as pressure drop, heat, mass, and momentum transfer are influenced by the phase velocity field. Still, various models are used for the determination of the velocity field. Therefore, there is a problem of choosing a model that will give the results closest to the real conditions. Flow visualiz...
Thermal Science
This paper is a description of the evolution of long-term research work on two-phase flows using ... more This paper is a description of the evolution of long-term research work on two-phase flows using parallel studies of dynamic image analysis and stochastic processes analysis. The state of current knowledge on the research of gas-solid and gas-liquid systems as well as a review of research relating to these issues are also presented. The work grants the principles of videogrammetric surveys based on stochastic analysis for a series of photographs taken with video techniques. The method applies the analysis of changes in selected features and parameters in the time domain. Especially in application to multiphase gas-liquid and solid-gas mixture flows, which are characterized by strong variabilities. Parameters such as flow patterns of the mixture were determined as time-space distributions of phase concentration, displacement velocities of separated two-phase structures, volume partitions of phases, and velocity field distributions are evaluated. The changes of certain parameters char...
Energies
This paper presents the results of research describing the thermokinetics of brown coal’s (lignit... more This paper presents the results of research describing the thermokinetics of brown coal’s (lignite) drying process in a fountain-bubble fluidized bed dryer. The drying medium was atmospheric air of a variable temperature in subsequent tests, which ranged from 27 to 70 °C. This paper presents the results of many experimental studies for two different types of brown coal: xylite, from the Bełchatów mine, and earth, from the Turów mine. The two types of brown coal are used to assess different sized coal particles and different air drying temperatures. The functions parameterizing the moisture content of dried coal at different air drying temperatures at any given time are also presented.
E3S Web of Conferences
The paper presents research related to the operation of an ground-source heat pump with a thermal... more The paper presents research related to the operation of an ground-source heat pump with a thermal output of 16.85 kW and an electrical power of 3.72 kW in various conditions, both from the mechanical and thermodynamic perspective. The publication contains the results of research on a selected heat pump model with an R410a refrigerant carried out in an accredited laboratory in the Czech Republic. Detailed analysis of the data in terms of changes in the COP coefficient for two heating water temperatures was carried out (35°C and 55°C) and in the range of outdoor air temperature from -10°C to 15°C every 1°C. The analysis was also carried out to determine the efficiency of the heat pump depending on the parameters of the heat source. Devices of this type, enabling effective use of environmental available thermal energy with low operating costs, meet increasingly stringent environmental protection requirements. Significant costs of heating buildings are one of the main reasons for the ne...
E3S Web of Conferences
This paper presents the design and implementation of device for remote and automatic monitoring o... more This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.
E3S Web of Conferences
Technology of wind exploitation has been applied widely all over the world and has already reache... more Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
Energies
This paper presents experimental studies on the optimization of two-phase fluid flow in an airlif... more This paper presents experimental studies on the optimization of two-phase fluid flow in an airlift pump. Airlift pumps, also known as mammoth pumps, are devices applied for vertical transport of liquids with the use of gas. Their operating principle involves the existence of a density gradient. This paper reports the results of experimental studies into the hydrodynamic effects of the airlift pump. The studies involved optical imaging of two-phase gas-liquid flow in a riser pipe. The visualization was performed with high-speed visualization techniques. The studies used a transparent model of airlift pump with a rectangular cross-section of the riser. The assessment of the airlift pump operation is based on the image grey-level analysis to provide the identification of two-phase flow regimes. The scope of the study also involved the determination of void fraction and pressure drops. The tests were carried out in a channel with dimensions 35 × 20 × 2045 mm with the gas flux range 0.2–...
Flow Measurement and Instrumentation
Abstract Two-phase flow regime is an important industrial process phenomenon. Pressure drops, vol... more Abstract Two-phase flow regime is an important industrial process phenomenon. Pressure drops, volume fraction and flow pattern are the most significant parameters describing the flow hydrodynamics of the two-phase mixtures. Authors propose a qualitative and quantitative description of the two-phase fluid flow structure, provided by the dynamic image analysis method. Method is based on high-speed visualization, stereological techniques and videogrammetry with grey level analysis and cross-correlation of signals. The study was conducted on a rectangular, vertical channel, with air-water co-current upwards flow. Dimensions of the channel are 5 × 50 × 1200 mm. The gas phase flux is 0.01 dm3/h and 0.16 dm3/h. The liquid phase flux is set to 0.01 dm3/h. The measurements and calculations were based on the stereology techniques, the Zuber-Finley and Mishima-Hibiki drift-flux model, and the grey level of the image. Two-phase flow parameters such as the void fraction, interfacial surface, free distance between objects, number of objects, average object size, drift and distribution coefficient was determined. Parameters were obtained as a function of time. Comparison of the image analysis results with the drift-flux models was made. To summarize, developed dynamic image analysis, provides information suitable for the assessment and reconstruction of the two-phase flow structure, which can be used for automatic process control.
Chinese Journal of Chemical Engineering
Abstract This study involved the analysis and characterization of the multiphase flow phenomenon ... more Abstract This study involved the analysis and characterization of the multiphase flow phenomenon inside the lower stage cyclone separator used in the clinker burning process. The analysis was performed using both CFD and experimental research methods. Very few studies are devoted to such types of cyclone separators, which in addition to their basic functions are also responsible for the technological process. Due to the atypical working conditions of these cyclone separators, they are characterized with a complex geometry, which significantly differs from that of the traditional separators. Furthermore, the evaluation of the accuracy and level of reliability of the two models of turbulence closure—k-e RNG and RSM (RANS), and the LES. The results obtained led to the conclusion that for the lower stage cyclone separators, the LES model proved to be the most accurate (both in the case of forecasting the separation efficiency and pressure drop). The performance parameter (in particular the separation efficiency) values obtained for the RSM model were also characterized by high accuracy. The k-e RNG model was characterized by significantly larger deviations.
Journal of Sustainable Development of Energy, Water and Environment Systems
Sustainable economic development requires the use of renewable energy sources in a rational and t... more Sustainable economic development requires the use of renewable energy sources in a rational and thoughtful way. In Polish conditions the use of several types of renewable energy sources on a single setup is a new issue. In particular, hybrid devices in conjunction with intelligent energy systems, such as lighting systems are generally not used. Therefore, the Polish energy production still relies on the burning of coal. Despite their advantages, renewable energy sources are characterized by seasonality and considerable instability. Access to renewable energy varies daily and seasonally, hence activities promoting the use of autonomous, hybrid power systems must be intensified. The presented research aims at the development of the Autonomous Power Supply (APS) system based on the so-called energy mix. Such a system works in an isolated arrangement and serves to reliably supply electricity from renewable sources for small residential or public utility devices in an urban area. Systems with up to 3 kW power consist of modules, whose modular design allows the combination of various power configurations and types of renewable energy used. The basic system consists of a primary power source, additional power source, emergency power source, energy storage device, weather station and controller. The energy mix depends on the geographical location of the system. The emergency source can be implemented as an on-grid connector or fuel power generator with the participation of 100% until the primary or accessory power source failure is removed. The energy storage system consists of batteries or supercapacitors. The proposed system can be combined to create a local network that automatically responds to energy shortages in various network nodes by adjusting the supply of electricity within the network depending on its needs. For Poland realistic solutions in this article are the new and modern answer to these requirements.
Journal of Environmental Management, 2017
Many industries use fluidization of solid particles for energy efficiency or environmental friend... more Many industries use fluidization of solid particles for energy efficiency or environmental friendly process development, and this paper introduces research techniques developed for investigating gas-particle systems At present there is plenty of room for refining gas-particle fluidization process. With the rapidly rising application of mathematical modelling, real time visualization of processes will be widely used for validation of those models in the near future. In presented research, photogrammetry, as a part of close range vision metrology, has been expanded to allow dynamic space and time analysis of the phase concentration distribution inside fluidization devices. A novel videogrammetry method was created with additional stochastic process analysis for detailed frequency and amplitude characteristics. Videogrammetry was used for the assessment of flow regimes, which were held in various types of fluidization apparatuses. Classic bubbling, jet-spouted and fast circulating fluidization processes were explored under the investigation. Videogrammetry is non-invasive flow regime recognition method, which enables detailed research of gas-particle fluidization phenomena. Until now, there were no comparative studies for three different types of fluidization processes with the use of one complex approach. Developed videogrammetric method consists of the flow structure visualization and dynamic image analysis. The analysed feature is the grey level of the image in time domain, and grey level signals were analysed with the use of autocorrelation function and power density function. The results are presented as images, plots and a flow map. Efficiency of the method was tested by comparison of real observed flow structures to the reconstructed flow structures and the recognition accuracy reached 92%.
Thermal Science, 2016
Paper describes a novel method for two-phase gas-solid flow structure validation in fluidized bed... more Paper describes a novel method for two-phase gas-solid flow structure validation in fluidized bed reactors. Investigation is based on application of stereology techniques. This is an innovative approach in the field of fluidization phenomena research. Study is focused on the analysis of flow structure images, obtained with high-speed visualization of the fluidization process. Fluidization is conducted in transparent narrow channel, where plastic balls are fluidized by air. Applied stereological analysis is grounded on the linear method and on the method of random and directed secants. This enables 2-dimensional image measurement and 3-dimensional stereological extrapolation. The major result is that for each two-phase gas-solid flow structure a set of stereological parameters exists. This enables quantification of the process. It has been found that the observation of inter-relation of all stereological parameters, during the changing of the flow structure, can be used for system co...