Stefan Schild - Academia.edu (original) (raw)
Papers by Stefan Schild
Infection and immunity, 2008
The gram-negative bacterium Vibrio cholerae releases outer membrane vesicles (OMVs) during growth... more The gram-negative bacterium Vibrio cholerae releases outer membrane vesicles (OMVs) during growth. In this study, we immunized female mice by the intranasal, intragastric, or intraperitoneal route with purified OMVs derived from V. cholerae. Independent of the route of immunization, mice induced specific, high-titer immune responses of similar levels against a variety of antigens present in the OMVs. After the last immunization, the half-maximum total immunoglobulin titer was stable over a 3-month period, indicating that the immune response was long lasting. The induction of specific isotypes, however, was dependent on the immunization route. Immunoglobulin A, for example, was induced to a significant level only by mucosal immunization, with the intranasal route generating the highest titers. We challenged the offspring of immunized female mice with V. cholerae via the oral route in two consecutive periods, approximately 30 and 95 days after the last immunization. Regardless of the route of immunization, the offspring was protected against colonization with V. cholerae in both challenge periods. Our results show that mucosal immunizations via both routes with OMVs derived from V. cholerae induce long-term protective immune responses against this gastrointestinal pathogen. These findings may contribute to the development of “nonliving,” OMV-based vaccines against V. cholerae and other enteric pathogens, using the oral or intranasal route of immunization.
Bacterial strains and plasmids are listed in Table S1. V. cholerae AC53 was used as a wildtype st... more Bacterial strains and plasmids are listed in Table S1. V. cholerae AC53 was used as a wildtype strain. For genetic manipulations E. coli strains DH5α, DH5αλpir and SM10λpir were used. Unless stated otherwise, bacteria were grown in LB at 37°C with aeration. M9 was prepared using DifcoTM M9 Minimal Salts according to the instructions. Supplements were used in the following
Cell host & microbe, Jan 11, 2007
The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic e... more The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic environments. While investigation of the infection process has revealed many factors important for pathogenesis, little is known regarding transmission of this or other water-borne pathogens. Using a temporally controlled reporter of transcription, we focus on bacterial gene expression during the late stage of infection and identify a unique class of V. cholerae genes specific to this stage. Mutational analysis revealed limited roles for these genes in infection. However, using a host-to-environment transition assay, we detected roles for six of ten genes examined for the ability of V. cholerae to persist within cholera stool and/or aquatic environments. Furthermore, passage through the intestinal tract was necessary to observe this phenotype. Thus, V. cholerae genes expressed prior to exiting the host intestinal tract are advantageous for subsequent life in aquatic environments.
International journal of medical microbiology : IJMM, 2005
Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as... more Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as the toxin-coregulated pili are among the factors which significantly contribute to intestinal colonization by Vibrio cholerae O1 and O139. To further address the contribution of LPS to V. cholerae virulence, we performed in vivo colonization experiments and mucus layer attachment studies with defined LPS and capsule mutants of O1 and O139. We investigated the interaction of V. cholerae strains with the differentiated human intestinal cell line HT29-Rev MTX, and found 3-5-fold reduced efficiencies for attachment by defined LPS and capsule mutants of O1 and O139 in comparison with the wild-type strains. In addition, two O1/O139-specific core oligosaccharide biosynthetic gene products, WavJ and WavD, were characterized and tested for colonization. We demonstrate that single and double knockout mutants in wavJ and wavD have an effect on core oligosaccharide biosynthesis, and that these muta...
The Journal of biological chemistry, Jan 8, 2005
The majority of Gram-negative bacteria transfer O antigen polysaccharides onto the lipid A-core o... more The majority of Gram-negative bacteria transfer O antigen polysaccharides onto the lipid A-core oligosaccharide via the action of surface polymer:lipid A-core ligases (WaaL). Here, we characterize the WaaL proteins of Vibrio cholerae with emphasis on structural and functional characterization of O antigen transfer and core oligosaccharide recognition. We demonstrate that the activity of two distantly related O antigen ligases is dependent on the presence of N-acetylglucosamine, and substitution of an additional sugar, i.e. galactose, alters the site specificity of the core oligosaccharide necessitating discriminative WaaL types. Protein topology analysis and a conserved domain search identified two distinct conserved motifs in the periplasmic domains of WaaL proteins. Site-directed mutagenesis of the two motifs, shown for WaaLs of V. cholerae and Salmonella enterica, caused a loss of O antigen transfer activity. Moreover, analogy of topology and motifs between WaaLs and O polysaccha...
International journal of medical microbiology : IJMM, Jan 18, 2014
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released ... more Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconn...
Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains r... more Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening ''superbugs'' for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the Oglycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that Oglycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics.
Antibiotic therapy disrupts the human intestinal microbiota. In some patients rapid overgrowth of... more Antibiotic therapy disrupts the human intestinal microbiota. In some patients rapid overgrowth of the enteric bacterium Klebsiella oxytoca results in antibiotic-associated hemorrhagic colitis (AAHC). We isolated and identified a toxin produced by K. oxytoca as the pyrrolobenzodiazepine tilivalline and demonstrated its causative action in the pathogenesis of colitis in an animal model. Tilivalline induced apoptosis in cultured human cells in vitro and disrupted epithelial barrier function, consistent with the mucosal damage associated with colitis observed in human AAHC and the corresponding animal model. Our findings reveal the presence of pyrrolobenzodiazepines in the intestinal microbiota and provide a mechanism for colitis caused by a resident pathobiont. The data link pyrrolobenzodiazepines to human disease and identify tilivalline as a target for diagnosis and neutralizing strategies in prevention and treatment of colitis.
PLoS Pathogens, 2008
Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio... more Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio cholerae and quenched by lytic vibriophage. However, studies to elucidate how these factors affect transmission are lacking because the field experiments are almost intractable. One reason for this is that V. cholerae loses the ability to culture upon transfer to pond water. This phenotype is called the active but non-culturable state (ABNC; an alternative term is viable but non-culturable) because these cells maintain the capacity for metabolic activity. ABNC bacteria may serve as the environmental reservoir for outbreaks but rigorous animal studies to test this hypothesis have not been conducted. In this project, we wanted to determine the relevance of ABNC cells to transmission as well as the impact lytic phage have on V. cholerae as the bacteria enter the ABNC state. Rice-water stool that naturally harbored lytic phage or in vitro derived V. cholerae were incubated in a pond microcosm, and the culturability, infectious dose, and transcriptome were assayed over 24 h. The data show that the major contributors to infection are culturable V. cholerae and not ABNC cells. Phage did not affect colonization immediately after shedding from the patients because the phage titer was too low. However, V. cholerae failed to colonize the small intestine after 24 h of incubation in pond water-the point when the phage and ABNC cell titers were highest. The transcriptional analysis traced the transformation into the non-infectious ABNC state and supports models for the adaptation to nutrient poor aquatic environments. Phage had an undetectable impact on this adaptation. Taken together, the rise of ABNC cells and lytic phage blocked transmission. Thus, there is a fitness advantage if V. cholerae can make a rapid transfer to the next host before these negative selective pressures compound in the aquatic environment.
PLoS Pathogens, 2013
The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal dis... more The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.
PLoS ONE, 2012
Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal ... more Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.
Molecular Microbiology, 2011
Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the ... more Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae.
Molecular Microbiology, 2013
Multi-drug resistant strains of Acinetobacter baumannii are increasingly being isolated in hospit... more Multi-drug resistant strains of Acinetobacter baumannii are increasingly being isolated in hospitals worldwide. Among the virulence factors identified in this bacterium there is a general O-glycosylation system that appears to be important for biofilm formation and virulence, and the capsular polysaccharide, which is essential for resistance to complement killing. In this work, we identified a locus that is responsible for the synthesis of the O-pentasaccharide found on the glycoproteins. Besides the enzymes required for the assembly of the glycan, additional proteins typically involved in polymerization and transport of capsule were identified within or adjacently to the locus. Mutagenesis of PglC, the initiating glycosyltransferase prevented the synthesis of both glycoproteins and capsule, resulting in abnormal biofilm structures and attenuated virulence in mice. These results, together with the structural analysis of A. baumannii 17978 capsular polysaccharide via NMR, demonstrated that the pentasaccharides that decorate the glycoproteins are also the building blocks for capsule biosynthesis. Two linked subunits, but not longer glycan chains, were detected on proteins via MS. The discovery of a bifurcated pathway for O-glycosylation and capsule synthesis not only provides insight into the biology of A. baumannii but also identifies potential novel candidates for intervention against this emerging pathogen.
Journal of Bacteriology, 2009
The facultative pathogen Vibrio cholerae is the causative agent of the human intestinal disease c... more The facultative pathogen Vibrio cholerae is the causative agent of the human intestinal disease cholera. Both motility and chemotaxis of V. cholerae have been shown to contribute to the virulence and spread of cholera. The flagellar gene operons are organized into a hierarchy composed of four classes (I to IV) based on their temporal expression patterns. Some regulatory elements involved in flagellar gene expression have been elucidated, but regulation is complex and flagellar biogenesis in V. cholerae is not completely understood. In this study, we determined that the virulence defect of a V. cholerae cheW1 deletion mutant was due to polar effects on the downstream open reading frame VC2058 (flrD). Expression of flrD in trans restored the virulence defect of the cheW1 deletion mutant, and deletion of flrD resulted in a V. cholerae strain attenuated for virulence, as determined by using the infant mouse intestinal colonization model. The flrD mutant strain exhibited decreased transcription of class III and IV flagellar genes and reduced motility. Transcription of the flrD promoter, which lies within the coding sequence of cheW1, is independent of the flagellar transcriptional activators FlrA and RpoN, which activate class II genes, indicating that flrD does not fit into any of the four flagellar gene classes. Genetic epistasis studies revealed that the two-component system FlrBC, which is required for class III and IV flagellar gene transcription, acts downstream of flrD. We hypothesize that the inner membrane protein FlrD interacts with the cytoplasmic FlrBC complex to activate class III and IV gene transcription.
International Journal of Medical Microbiology, 2014
Haemophilus influenzae is a Gram-negative bacillus and a frequent commensal of the human nasophar... more Haemophilus influenzae is a Gram-negative bacillus and a frequent commensal of the human nasopharynx. Earlier work demonstrated that in H. influenzae type b, l-lactate metabolism is associated with serum resistance and in vivo survival of the organism. To further gain insight into lactate utilization of the non-typeable (NTHi) isolate 2019 and laboratory prototype strain Rd KW20, deletion mutants of the l-lactate dehydrogenase (lctD) and permease (lctP) were generated and characterized. It is shown, that the apparent KM of l-lactate uptake is 20.1μM as determined for strain Rd KW20. Comparison of the COPD isolate NTHi 2019-R with the corresponding lctP knockout strain for survival in human serum revealed no lactate dependent serum resistance. In contrast, we observed a 4-fold attenuation of the mutant strain in a murine model of nasopharyngeal colonization. Characterization of lctP transcriptional control shows that the lactate utilization system in H. influenzae is not an inductor inducible system. Rather negative feedback regulation was observed in the presence of l-lactate and this is dependent on the ArcAB regulatory system. Additionally, for 2019 it was found that lactate may have signaling function leading to increased cell growth in late log phase under conditions where no l-lactate is metabolized. This effect seems to be ArcA independent and was not observed in strain Rd KW20. We conclude that l-lactate is an important carbon-source and may act as host specific signal substrate which fine tunes the globally acting ArcAB regulon and may additionally affect a yet unknown signaling system and thus may contribute to enhanced in vivo survival.
International Journal of Medical Microbiology, 2005
Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as... more Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as the toxincoregulated pili are among the factors which significantly contribute to intestinal colonization by Vibrio cholerae O1 and O139. To further address the contribution of LPS to V. cholerae virulence, we performed in vivo colonization experiments and mucus layer attachment studies with defined LPS and capsule mutants of O1 and O139. We investigated the interaction of V. cholerae strains with the differentiated human intestinal cell line HT29-Rev MTX, and found 3-5-fold reduced efficiencies for attachment by defined LPS and capsule mutants of O1 and O139 in comparison with the wild-type strains. In addition, two O1/O139-specific core oligosaccharide biosynthetic gene products, WavJ and WavD, were characterized and tested for colonization. We demonstrate that single and double knockout mutants in wavJ and wavD have an effect on core oligosaccharide biosynthesis, and that these mutants show an attenuated growth in the presence of novobiocin. Curiously, in the mouse intestinal colonization model, only the O139 wavJ,D mutants demonstrated reduced colonization.
Infection and Immunity, 2002
Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogrou... more Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investigated the role of LPS O side chain and capsular polysaccharide (CPS) in intestinal colonization by with genetically engineered mutants. We constructed CPS-negative, CPS/LPS O side chain-negative, and CPS-positive/LPS O side chain-negative mutants. Furthermore, we constructed two mutants with defects in LPS core oligosaccharide (OS) assembly. Loss of LPS O side chain or CPS resulted in a Ϸ30-fold reduction in colonization of the infant mouse small intestine, indicating that the presence of both LPS O side chain and CPS is important during the colonization process. The strain lacking both CPS and LPS O side chain and a CPS-positive, LPS O side chain-negative core OS mutant were both essentially unable to colonize. To characterize the role of surface polysaccharides in survival in the host intestine, resistance to several antimicrobial substances was investigated in vitro. These investigations revealed that the presence of CPS protects the cell against attack of the complement system and that an intact core OS is necessary for survival in the presence of bile.
Infection and Immunity, 2008
In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm fo... more In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm formation and negatively regulates virulence and is proposed to play an important role in the transition from persistence in the environment to survival in the host. Herein we describe a characterization of the infection-induced gene cdpA, which encodes both GGDEF and EAL domains, which are known to mediate diguanylate cyclase and c-di-GMP phosphodiesterase (PDE) activities, respectively. CdpA is shown to possess PDE activity, and this activity is regulated by its inactive degenerate GGDEF domain. CdpA inhibits biofilm formation but has no effect on colonization of the infant mouse small intestine. Consistent with these observations, cdpA is expressed during in vitro growth in a biofilm but is not expressed in vivo until the late stage of infection, after colonization has occurred. To test for a role of c-di-GMP in the early stages of infection, we artificially increased c-di-GMP and observed reduced colonization. This was attributed to a significant reduction in toxT transcription during infection. Cumulatively, these results support a model of the V. cholerae life cycle in which c-di-GMP must be down-regulated early after entering the small intestine and maintained at a low level to allow virulence gene expression, colonization, and motility at appropriate stages of infection.
Infection and Immunity, 2002
We identified five different putative wav gene cluster types, which are responsible for the synth... more We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.
Cell Host & Microbe, 2007
The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic e... more The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic environments. While investigation of the infection has revealed many factors important for pathogenesis, little is known regarding transmission of this nor of other water-borne pathogens. Here we focus on the late stage of infection using a temporally controlled reporter of transcription, and identify a unique class of V. cholerae genes that are specific to this stage. Mutational analysis revealed few roles for these genes in infection. However, using a novel host-to-environment transition assay we detected roles for six of ten genes examined in persistence within cholera stool and/or within aquatic environments. Our results further indicate that passage through the intestinal tract is necessary to observe this phenotype. Thus, V. cholerae has evolved mechanisms that are advantageous for life in aquatic environments, which are expressed prior to exiting the host intestinal tract.
Infection and immunity, 2008
The gram-negative bacterium Vibrio cholerae releases outer membrane vesicles (OMVs) during growth... more The gram-negative bacterium Vibrio cholerae releases outer membrane vesicles (OMVs) during growth. In this study, we immunized female mice by the intranasal, intragastric, or intraperitoneal route with purified OMVs derived from V. cholerae. Independent of the route of immunization, mice induced specific, high-titer immune responses of similar levels against a variety of antigens present in the OMVs. After the last immunization, the half-maximum total immunoglobulin titer was stable over a 3-month period, indicating that the immune response was long lasting. The induction of specific isotypes, however, was dependent on the immunization route. Immunoglobulin A, for example, was induced to a significant level only by mucosal immunization, with the intranasal route generating the highest titers. We challenged the offspring of immunized female mice with V. cholerae via the oral route in two consecutive periods, approximately 30 and 95 days after the last immunization. Regardless of the route of immunization, the offspring was protected against colonization with V. cholerae in both challenge periods. Our results show that mucosal immunizations via both routes with OMVs derived from V. cholerae induce long-term protective immune responses against this gastrointestinal pathogen. These findings may contribute to the development of “nonliving,” OMV-based vaccines against V. cholerae and other enteric pathogens, using the oral or intranasal route of immunization.
Bacterial strains and plasmids are listed in Table S1. V. cholerae AC53 was used as a wildtype st... more Bacterial strains and plasmids are listed in Table S1. V. cholerae AC53 was used as a wildtype strain. For genetic manipulations E. coli strains DH5α, DH5αλpir and SM10λpir were used. Unless stated otherwise, bacteria were grown in LB at 37°C with aeration. M9 was prepared using DifcoTM M9 Minimal Salts according to the instructions. Supplements were used in the following
Cell host & microbe, Jan 11, 2007
The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic e... more The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic environments. While investigation of the infection process has revealed many factors important for pathogenesis, little is known regarding transmission of this or other water-borne pathogens. Using a temporally controlled reporter of transcription, we focus on bacterial gene expression during the late stage of infection and identify a unique class of V. cholerae genes specific to this stage. Mutational analysis revealed limited roles for these genes in infection. However, using a host-to-environment transition assay, we detected roles for six of ten genes examined for the ability of V. cholerae to persist within cholera stool and/or aquatic environments. Furthermore, passage through the intestinal tract was necessary to observe this phenotype. Thus, V. cholerae genes expressed prior to exiting the host intestinal tract are advantageous for subsequent life in aquatic environments.
International journal of medical microbiology : IJMM, 2005
Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as... more Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as the toxin-coregulated pili are among the factors which significantly contribute to intestinal colonization by Vibrio cholerae O1 and O139. To further address the contribution of LPS to V. cholerae virulence, we performed in vivo colonization experiments and mucus layer attachment studies with defined LPS and capsule mutants of O1 and O139. We investigated the interaction of V. cholerae strains with the differentiated human intestinal cell line HT29-Rev MTX, and found 3-5-fold reduced efficiencies for attachment by defined LPS and capsule mutants of O1 and O139 in comparison with the wild-type strains. In addition, two O1/O139-specific core oligosaccharide biosynthetic gene products, WavJ and WavD, were characterized and tested for colonization. We demonstrate that single and double knockout mutants in wavJ and wavD have an effect on core oligosaccharide biosynthesis, and that these muta...
The Journal of biological chemistry, Jan 8, 2005
The majority of Gram-negative bacteria transfer O antigen polysaccharides onto the lipid A-core o... more The majority of Gram-negative bacteria transfer O antigen polysaccharides onto the lipid A-core oligosaccharide via the action of surface polymer:lipid A-core ligases (WaaL). Here, we characterize the WaaL proteins of Vibrio cholerae with emphasis on structural and functional characterization of O antigen transfer and core oligosaccharide recognition. We demonstrate that the activity of two distantly related O antigen ligases is dependent on the presence of N-acetylglucosamine, and substitution of an additional sugar, i.e. galactose, alters the site specificity of the core oligosaccharide necessitating discriminative WaaL types. Protein topology analysis and a conserved domain search identified two distinct conserved motifs in the periplasmic domains of WaaL proteins. Site-directed mutagenesis of the two motifs, shown for WaaLs of V. cholerae and Salmonella enterica, caused a loss of O antigen transfer activity. Moreover, analogy of topology and motifs between WaaLs and O polysaccha...
International journal of medical microbiology : IJMM, Jan 18, 2014
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released ... more Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconn...
Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains r... more Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening ''superbugs'' for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the Oglycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that Oglycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics.
Antibiotic therapy disrupts the human intestinal microbiota. In some patients rapid overgrowth of... more Antibiotic therapy disrupts the human intestinal microbiota. In some patients rapid overgrowth of the enteric bacterium Klebsiella oxytoca results in antibiotic-associated hemorrhagic colitis (AAHC). We isolated and identified a toxin produced by K. oxytoca as the pyrrolobenzodiazepine tilivalline and demonstrated its causative action in the pathogenesis of colitis in an animal model. Tilivalline induced apoptosis in cultured human cells in vitro and disrupted epithelial barrier function, consistent with the mucosal damage associated with colitis observed in human AAHC and the corresponding animal model. Our findings reveal the presence of pyrrolobenzodiazepines in the intestinal microbiota and provide a mechanism for colitis caused by a resident pathobiont. The data link pyrrolobenzodiazepines to human disease and identify tilivalline as a target for diagnosis and neutralizing strategies in prevention and treatment of colitis.
PLoS Pathogens, 2008
Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio... more Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio cholerae and quenched by lytic vibriophage. However, studies to elucidate how these factors affect transmission are lacking because the field experiments are almost intractable. One reason for this is that V. cholerae loses the ability to culture upon transfer to pond water. This phenotype is called the active but non-culturable state (ABNC; an alternative term is viable but non-culturable) because these cells maintain the capacity for metabolic activity. ABNC bacteria may serve as the environmental reservoir for outbreaks but rigorous animal studies to test this hypothesis have not been conducted. In this project, we wanted to determine the relevance of ABNC cells to transmission as well as the impact lytic phage have on V. cholerae as the bacteria enter the ABNC state. Rice-water stool that naturally harbored lytic phage or in vitro derived V. cholerae were incubated in a pond microcosm, and the culturability, infectious dose, and transcriptome were assayed over 24 h. The data show that the major contributors to infection are culturable V. cholerae and not ABNC cells. Phage did not affect colonization immediately after shedding from the patients because the phage titer was too low. However, V. cholerae failed to colonize the small intestine after 24 h of incubation in pond water-the point when the phage and ABNC cell titers were highest. The transcriptional analysis traced the transformation into the non-infectious ABNC state and supports models for the adaptation to nutrient poor aquatic environments. Phage had an undetectable impact on this adaptation. Taken together, the rise of ABNC cells and lytic phage blocked transmission. Thus, there is a fitness advantage if V. cholerae can make a rapid transfer to the next host before these negative selective pressures compound in the aquatic environment.
PLoS Pathogens, 2013
The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal dis... more The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.
PLoS ONE, 2012
Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal ... more Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.
Molecular Microbiology, 2011
Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the ... more Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae.
Molecular Microbiology, 2013
Multi-drug resistant strains of Acinetobacter baumannii are increasingly being isolated in hospit... more Multi-drug resistant strains of Acinetobacter baumannii are increasingly being isolated in hospitals worldwide. Among the virulence factors identified in this bacterium there is a general O-glycosylation system that appears to be important for biofilm formation and virulence, and the capsular polysaccharide, which is essential for resistance to complement killing. In this work, we identified a locus that is responsible for the synthesis of the O-pentasaccharide found on the glycoproteins. Besides the enzymes required for the assembly of the glycan, additional proteins typically involved in polymerization and transport of capsule were identified within or adjacently to the locus. Mutagenesis of PglC, the initiating glycosyltransferase prevented the synthesis of both glycoproteins and capsule, resulting in abnormal biofilm structures and attenuated virulence in mice. These results, together with the structural analysis of A. baumannii 17978 capsular polysaccharide via NMR, demonstrated that the pentasaccharides that decorate the glycoproteins are also the building blocks for capsule biosynthesis. Two linked subunits, but not longer glycan chains, were detected on proteins via MS. The discovery of a bifurcated pathway for O-glycosylation and capsule synthesis not only provides insight into the biology of A. baumannii but also identifies potential novel candidates for intervention against this emerging pathogen.
Journal of Bacteriology, 2009
The facultative pathogen Vibrio cholerae is the causative agent of the human intestinal disease c... more The facultative pathogen Vibrio cholerae is the causative agent of the human intestinal disease cholera. Both motility and chemotaxis of V. cholerae have been shown to contribute to the virulence and spread of cholera. The flagellar gene operons are organized into a hierarchy composed of four classes (I to IV) based on their temporal expression patterns. Some regulatory elements involved in flagellar gene expression have been elucidated, but regulation is complex and flagellar biogenesis in V. cholerae is not completely understood. In this study, we determined that the virulence defect of a V. cholerae cheW1 deletion mutant was due to polar effects on the downstream open reading frame VC2058 (flrD). Expression of flrD in trans restored the virulence defect of the cheW1 deletion mutant, and deletion of flrD resulted in a V. cholerae strain attenuated for virulence, as determined by using the infant mouse intestinal colonization model. The flrD mutant strain exhibited decreased transcription of class III and IV flagellar genes and reduced motility. Transcription of the flrD promoter, which lies within the coding sequence of cheW1, is independent of the flagellar transcriptional activators FlrA and RpoN, which activate class II genes, indicating that flrD does not fit into any of the four flagellar gene classes. Genetic epistasis studies revealed that the two-component system FlrBC, which is required for class III and IV flagellar gene transcription, acts downstream of flrD. We hypothesize that the inner membrane protein FlrD interacts with the cytoplasmic FlrBC complex to activate class III and IV gene transcription.
International Journal of Medical Microbiology, 2014
Haemophilus influenzae is a Gram-negative bacillus and a frequent commensal of the human nasophar... more Haemophilus influenzae is a Gram-negative bacillus and a frequent commensal of the human nasopharynx. Earlier work demonstrated that in H. influenzae type b, l-lactate metabolism is associated with serum resistance and in vivo survival of the organism. To further gain insight into lactate utilization of the non-typeable (NTHi) isolate 2019 and laboratory prototype strain Rd KW20, deletion mutants of the l-lactate dehydrogenase (lctD) and permease (lctP) were generated and characterized. It is shown, that the apparent KM of l-lactate uptake is 20.1μM as determined for strain Rd KW20. Comparison of the COPD isolate NTHi 2019-R with the corresponding lctP knockout strain for survival in human serum revealed no lactate dependent serum resistance. In contrast, we observed a 4-fold attenuation of the mutant strain in a murine model of nasopharyngeal colonization. Characterization of lctP transcriptional control shows that the lactate utilization system in H. influenzae is not an inductor inducible system. Rather negative feedback regulation was observed in the presence of l-lactate and this is dependent on the ArcAB regulatory system. Additionally, for 2019 it was found that lactate may have signaling function leading to increased cell growth in late log phase under conditions where no l-lactate is metabolized. This effect seems to be ArcA independent and was not observed in strain Rd KW20. We conclude that l-lactate is an important carbon-source and may act as host specific signal substrate which fine tunes the globally acting ArcAB regulon and may additionally affect a yet unknown signaling system and thus may contribute to enhanced in vivo survival.
International Journal of Medical Microbiology, 2005
Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as... more Components of lipopolysaccharide (LPS), i.e. capsule, O antigen, core oligosaccharide, as well as the toxincoregulated pili are among the factors which significantly contribute to intestinal colonization by Vibrio cholerae O1 and O139. To further address the contribution of LPS to V. cholerae virulence, we performed in vivo colonization experiments and mucus layer attachment studies with defined LPS and capsule mutants of O1 and O139. We investigated the interaction of V. cholerae strains with the differentiated human intestinal cell line HT29-Rev MTX, and found 3-5-fold reduced efficiencies for attachment by defined LPS and capsule mutants of O1 and O139 in comparison with the wild-type strains. In addition, two O1/O139-specific core oligosaccharide biosynthetic gene products, WavJ and WavD, were characterized and tested for colonization. We demonstrate that single and double knockout mutants in wavJ and wavD have an effect on core oligosaccharide biosynthesis, and that these mutants show an attenuated growth in the presence of novobiocin. Curiously, in the mouse intestinal colonization model, only the O139 wavJ,D mutants demonstrated reduced colonization.
Infection and Immunity, 2002
Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogrou... more Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investigated the role of LPS O side chain and capsular polysaccharide (CPS) in intestinal colonization by with genetically engineered mutants. We constructed CPS-negative, CPS/LPS O side chain-negative, and CPS-positive/LPS O side chain-negative mutants. Furthermore, we constructed two mutants with defects in LPS core oligosaccharide (OS) assembly. Loss of LPS O side chain or CPS resulted in a Ϸ30-fold reduction in colonization of the infant mouse small intestine, indicating that the presence of both LPS O side chain and CPS is important during the colonization process. The strain lacking both CPS and LPS O side chain and a CPS-positive, LPS O side chain-negative core OS mutant were both essentially unable to colonize. To characterize the role of surface polysaccharides in survival in the host intestine, resistance to several antimicrobial substances was investigated in vitro. These investigations revealed that the presence of CPS protects the cell against attack of the complement system and that an intact core OS is necessary for survival in the presence of bile.
Infection and Immunity, 2008
In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm fo... more In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm formation and negatively regulates virulence and is proposed to play an important role in the transition from persistence in the environment to survival in the host. Herein we describe a characterization of the infection-induced gene cdpA, which encodes both GGDEF and EAL domains, which are known to mediate diguanylate cyclase and c-di-GMP phosphodiesterase (PDE) activities, respectively. CdpA is shown to possess PDE activity, and this activity is regulated by its inactive degenerate GGDEF domain. CdpA inhibits biofilm formation but has no effect on colonization of the infant mouse small intestine. Consistent with these observations, cdpA is expressed during in vitro growth in a biofilm but is not expressed in vivo until the late stage of infection, after colonization has occurred. To test for a role of c-di-GMP in the early stages of infection, we artificially increased c-di-GMP and observed reduced colonization. This was attributed to a significant reduction in toxT transcription during infection. Cumulatively, these results support a model of the V. cholerae life cycle in which c-di-GMP must be down-regulated early after entering the small intestine and maintained at a low level to allow virulence gene expression, colonization, and motility at appropriate stages of infection.
Infection and Immunity, 2002
We identified five different putative wav gene cluster types, which are responsible for the synth... more We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.
Cell Host & Microbe, 2007
The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic e... more The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic environments. While investigation of the infection has revealed many factors important for pathogenesis, little is known regarding transmission of this nor of other water-borne pathogens. Here we focus on the late stage of infection using a temporally controlled reporter of transcription, and identify a unique class of V. cholerae genes that are specific to this stage. Mutational analysis revealed few roles for these genes in infection. However, using a novel host-to-environment transition assay we detected roles for six of ten genes examined in persistence within cholera stool and/or within aquatic environments. Our results further indicate that passage through the intestinal tract is necessary to observe this phenotype. Thus, V. cholerae has evolved mechanisms that are advantageous for life in aquatic environments, which are expressed prior to exiting the host intestinal tract.