Stephen Furlani - Academia.edu (original) (raw)

Uploads

Papers by Stephen Furlani

Research paper thumbnail of Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG

Clinical Neurophysiology, 2007

To explore effective combinations of computational methods for the prediction of movement intenti... more To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

Research paper thumbnail of A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training

Journal of Neuroengineering and Rehabilitation, 2009

Background: Brain-computer interfaces (BCI) use electroencephalography (EEG) to interpret user in... more Background: Brain-computer interfaces (BCI) use electroencephalography (EEG) to interpret user intention and control an output device accordingly. We describe a novel BCI method to use a signal from five EEG channels (comprising one primary channel with four additional channels used to calculate its Laplacian derivation) to provide two-dimensional (2-D) control of a cursor on a computer screen, with simple threshold-based binary classification of band power readings taken over pre-defined time windows during subject hand movement.

Research paper thumbnail of Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries

Clinical Neurophysiology, 2008

Objective-To use the neural signals preceding movement and motor imagery to predict which of four... more Objective-To use the neural signals preceding movement and motor imagery to predict which of four movements/motor imageries is about to occur, and to access this utility for brain-computer interface (BCI) applications.

Research paper thumbnail of Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG

Clinical Neurophysiology, 2007

To explore effective combinations of computational methods for the prediction of movement intenti... more To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

Research paper thumbnail of A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training

Journal of Neuroengineering and Rehabilitation, 2009

Background: Brain-computer interfaces (BCI) use electroencephalography (EEG) to interpret user in... more Background: Brain-computer interfaces (BCI) use electroencephalography (EEG) to interpret user intention and control an output device accordingly. We describe a novel BCI method to use a signal from five EEG channels (comprising one primary channel with four additional channels used to calculate its Laplacian derivation) to provide two-dimensional (2-D) control of a cursor on a computer screen, with simple threshold-based binary classification of band power readings taken over pre-defined time windows during subject hand movement.

Research paper thumbnail of Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries

Clinical Neurophysiology, 2008

Objective-To use the neural signals preceding movement and motor imagery to predict which of four... more Objective-To use the neural signals preceding movement and motor imagery to predict which of four movements/motor imageries is about to occur, and to access this utility for brain-computer interface (BCI) applications.