Steven George - Academia.edu (original) (raw)
Uploads
Papers by Steven George
Thermal Al2O3 atomic layer etching (ALE) can be accomplished using sequential fluorination and li... more Thermal Al2O3 atomic layer etching (ALE) can be accomplished using sequential fluorination and ligand-exchange reactions. HF can be employed as the fluorination reactant, and Al(CH3)3 can be utilized as the metal precursor for ligand exchange. This study explored the effect of HF pressure on the Al2O3 etch rates and Al2O3 fluorination. Different HF pressures ranging from 0.07 to 9.0 Torr were employed for Al2O3 fluorination. Using ex situ spectroscopic ellipsometry (SE) measurements, the Al2O3 etch rates increased with HF pressures and then leveled out at the highest HF pressures. Al2O3 etch rates of 0.6, 1.6, 2.0, 2.4, and 2.5 Å/cycle were obtained at 300 °C for HF pressures of 0.17, 0.5, 1.0, 5.0, and 8.0 Torr, respectively. The thicknesses of the corresponding fluoride layers were also measured using X-ray photoelectron spectroscopy (XPS). Assuming an Al2OF4 layer on the Al2O3 surface, the fluoride thicknesses increased with HF pressures and reached saturation values at the highe...
Accounts of Chemical Research
ECS Meeting Abstracts
not Available.
The Journal of Physical Chemistry C
Journal of The Electrochemical Society
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
The Journal of Physical Chemistry C
ECS Journal of Solid State Science and Technology
Journal of the Electrochemical Society
Advanced Materials Interfaces
ACS applied materials & interfaces, Jan 6, 2017
The thermal atomic layer etching (ALE) of WO3 and W were demonstrated with "conversion-fluor... more The thermal atomic layer etching (ALE) of WO3 and W were demonstrated with "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these new mechanisms are based on sequential, self-limiting reactions. WO3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl3) and hydrogen fluoride (HF). BCl3 converts the WO3 surface to a B2O3 layer while forming volatile WOxCly products. Subsequently, HF spontaneously etches the B2O3 layer producing volatile BF3 and H2O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl3 and HF reactions were self-limiting versus exposure. The WO3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128°C to 4.19 Å/cycle at 207°C. W served as an etch stop because BCl3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" ...
International journal of pharmaceutics, Jan 9, 2017
We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayer... more We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit(®) E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO2 nanolayers decreased the mechanical strength,...
Thermal Al2O3 atomic layer etching (ALE) can be accomplished using sequential fluorination and li... more Thermal Al2O3 atomic layer etching (ALE) can be accomplished using sequential fluorination and ligand-exchange reactions. HF can be employed as the fluorination reactant, and Al(CH3)3 can be utilized as the metal precursor for ligand exchange. This study explored the effect of HF pressure on the Al2O3 etch rates and Al2O3 fluorination. Different HF pressures ranging from 0.07 to 9.0 Torr were employed for Al2O3 fluorination. Using ex situ spectroscopic ellipsometry (SE) measurements, the Al2O3 etch rates increased with HF pressures and then leveled out at the highest HF pressures. Al2O3 etch rates of 0.6, 1.6, 2.0, 2.4, and 2.5 Å/cycle were obtained at 300 °C for HF pressures of 0.17, 0.5, 1.0, 5.0, and 8.0 Torr, respectively. The thicknesses of the corresponding fluoride layers were also measured using X-ray photoelectron spectroscopy (XPS). Assuming an Al2OF4 layer on the Al2O3 surface, the fluoride thicknesses increased with HF pressures and reached saturation values at the highe...
Accounts of Chemical Research
ECS Meeting Abstracts
not Available.
The Journal of Physical Chemistry C
Journal of The Electrochemical Society
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
The Journal of Physical Chemistry C
ECS Journal of Solid State Science and Technology
Journal of the Electrochemical Society
Advanced Materials Interfaces
ACS applied materials & interfaces, Jan 6, 2017
The thermal atomic layer etching (ALE) of WO3 and W were demonstrated with "conversion-fluor... more The thermal atomic layer etching (ALE) of WO3 and W were demonstrated with "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these new mechanisms are based on sequential, self-limiting reactions. WO3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl3) and hydrogen fluoride (HF). BCl3 converts the WO3 surface to a B2O3 layer while forming volatile WOxCly products. Subsequently, HF spontaneously etches the B2O3 layer producing volatile BF3 and H2O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl3 and HF reactions were self-limiting versus exposure. The WO3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128°C to 4.19 Å/cycle at 207°C. W served as an etch stop because BCl3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" ...
International journal of pharmaceutics, Jan 9, 2017
We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayer... more We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit(®) E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO2 nanolayers decreased the mechanical strength,...