Sui Huang - Academia.edu (original) (raw)
Papers by Sui Huang
Intratumor cellular heterogeneity and non-genetic cell plasticity in tumors pose a recently recog... more Intratumor cellular heterogeneity and non-genetic cell plasticity in tumors pose a recently recognized challenge to cancer treatment. Because of the dispersion of initial cell states within a clonal tumor cell population, a perturbation imparted by a cytocidal drug only kills a fraction of cells. Due to dynamic instability of cellular states the cells not killed are pushed by the treatment into a variety of functional states, including a “stem-like state” that confers resistance to treatment and regenerative capacity. This immanent stress-induced stemness competes against cell death in response to the same perturbation and may explain the near-inevitable recurrence after any treatment. This double-edged-sword mechanism of treatment complements the selection of preexisting resistant cells in explaining post-treatment progression. Unlike selection, the induction of a resistant state has not been systematically analyzed as an immanent cause of relapse. Here, we present a generic elemen...
Open biology, Nov 1, 2017
Colorectal cancer (CRC) has complex pathological features that defy the linear-additive reasoning... more Colorectal cancer (CRC) has complex pathological features that defy the linear-additive reasoning prevailing in current biomedicine studies. In pursuing a mechanistic understanding behind such complexity, we constructed a core molecular-cellular interaction network underlying CRC and investigated its nonlinear dynamical properties. The hypothesis and modelling method has been developed previously and tested in various cancer studies. The network dynamics reveal a landscape of several attractive basins corresponding to both normal intestinal phenotype and robust tumour subtypes, identified by their different molecular signatures. Comparison between the modelling results and gene expression profiles from patients collected at the second affiliated hospital of Zhejiang University is presented as validation. The numerical 'driving' experiment suggests that CRC pathogenesis may depend on pathways involved in gastrointestinal track development and molecules associated with mesench...
Briefings in Functional Genomics and Proteomics, 2004
Proceedings of the National Academy of Sciences of the United States of America, Feb 28, 2017
Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types... more Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the...
Oncotarget, Jan 19, 2016
The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents ... more The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also reveale...
Single-cell analyses of transcript and protein expression profiles - more precisely, single-cell ... more Single-cell analyses of transcript and protein expression profiles - more precisely, single-cell resolution analysis of molecular profiles of cell populations - have now entered center stage with the wide application of single-cell qPCR, single-cell RNA-Seq and CytOF. These high-dimensional population snapshots techniques are complemented by low-dimensional time-resolved microscopy-based monitoring methods of individual cells. Both fronts of advance have exposed a rich heterogeneity of cell states within uniform cell populations in many biological contexts, producing a new kind of data that has stimulated a series of computational analysis methods for data visualization, dimensionality reduction, and "cluster"(subpopulation) identification. The next step is to go beyond collecting data and correlating data points with computational analyses: to connect the dots, that is, to understand what actually underlies the identified data patterns. This entails interpreting the "...
Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage requi... more Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage requires broad changes of their gene expression profile. However, how progenitor cells overcome the stability of their robust gene expression configuration (attractor) and exit their state remains elusive. Here we show that commitment of blood progenitor cells to the erythroid or the myeloid lineage is preceded by the destabilization of their high-dimensional attractor state and that cells undergo a critical state transition. Single-cell resolution analysis of gene expression in populations of differentiating cells affords a new quantitative index for predicting critical transitions in a high-dimensional state space: decrease of correlation between cells with concomitant increase of correlation between genes as cells approach a tipping point. The detection of “rebellious cells” which enter the fate opposite to the one intended corroborates the model of preceding destabilization of the progeni...
PloS one, 2015
Breast cancer stem cells (CSCs) are thought to drive recurrence and metastasis. Their identity ha... more Breast cancer stem cells (CSCs) are thought to drive recurrence and metastasis. Their identity has been linked to the epithelial to mesenchymal transition (EMT) but remains highly controversial since-depending on the cell-line studied-either epithelial (E) or mesenchymal (M) markers, alone or together have been associated with stemness. Using distinct transcript expression signatures characterizing the three different E, M and hybrid E/M cell-types, our data support a novel model that links a mixed EM signature with stemness in 1) individual cells, 2) luminal and basal cell lines, 3) in vivo xenograft mouse models, and 4) in all breast cancer subtypes. In particular, we found that co-expression of E and M signatures was associated with poorest outcome in luminal and basal breast cancer patients as well as with enrichment for stem-like cells in both E and M breast cell-lines. This link between a mixed EM expression signature and stemness was explained by two findings: first, mixed cu...
BMC cell biology, Jan 28, 2006
Cell differentiation has long been theorized to represent a switch in a bistable system, and rece... more Cell differentiation has long been theorized to represent a switch in a bistable system, and recent experimental work in micro-organisms has revealed bistable dynamics in small gene regulatory circuits. However, the dynamics of mammalian cell differentiation has not been analyzed with respect to bistability. Here we studied how HL60 promyelocytic precursor cells transition to the neutrophil cell lineage after stimulation with the differentiation inducer, dimethyl sulfoxide (DMSO). Single cell analysis of the expression kinetics of the differentiation marker CD11b (Mac-1) revealed all-or-none switch-like behavior, in contrast to the seemingly graduated change of expression when measured as a population average. Progression from the precursor to the differentiated state was detected as a discrete transition between low (CD11bLow) and high (CD11bHigh) expressor subpopulations distinguishable in a bimodal distribution. Hysteresis in the dependence of CD11b expression on DMSO dose sugges...
Topics in Biomedical Engineering International Book Series
European journal of immunology, 2014
Recent advances in understanding CD4(+) T-cell differentiation suggest that previous models of a ... more Recent advances in understanding CD4(+) T-cell differentiation suggest that previous models of a few distinct, stable effector phenotypes were too simplistic. Although several well-characterized phenotypes are still recognized, some states display plasticity, and intermediate phenotypes exist. As a framework for reexamining these concepts, we use Waddington's landscape paradigm, augmented with explicit consideration of stochastic variations. Our animation program "LAVA" visualizes T-cell differentiation as cells moving across a landscape of hills and valleys, leading to attractor basins representing stable or semistable differentiation states. The model illustrates several principles, including: (i) cell populations may behave more predictably than individual cells; (ii) analogous to reticulate evolution, differentiation may proceed through a network of interconnected states, rather than a single well-defined pathway; (iii) relatively minor changes in the barriers betw...
PLoS Computational Biology, 2012
Philosophical Transactions of the Royal Society B: Biological Sciences, 2011
Stem cell behaviours, such as stabilization of the undecided state of pluripotency or multipotenc... more Stem cell behaviours, such as stabilization of the undecided state of pluripotency or multipotency, the priming towards a prospective fate, binary fate decisions and irreversible commitment, must all somehow emerge from a genome-wide gene-regulatory network. Its unfathomable complexity defies the standard mode of explanation that is deeply rooted in molecular biology thinking: the reduction of observables to linear deterministic molecular pathways that are tacitly taken as chains of causation. Such culture of proximate explanation that uses qualitative arguments, simple arrow–arrow schemes or metaphors persists despite the ceaseless accumulation of ‘omics’ data and the rise of systems biology that now offers precise conceptual tools to explain emergent cell behaviours from gene networks. To facilitate the embrace of the principles of physics and mathematics that underlie such systems and help to bridge the gap between the formal description of theorists and the intuition of experime...
Nature Reviews Genetics, 2009
Intratumor cellular heterogeneity and non-genetic cell plasticity in tumors pose a recently recog... more Intratumor cellular heterogeneity and non-genetic cell plasticity in tumors pose a recently recognized challenge to cancer treatment. Because of the dispersion of initial cell states within a clonal tumor cell population, a perturbation imparted by a cytocidal drug only kills a fraction of cells. Due to dynamic instability of cellular states the cells not killed are pushed by the treatment into a variety of functional states, including a “stem-like state” that confers resistance to treatment and regenerative capacity. This immanent stress-induced stemness competes against cell death in response to the same perturbation and may explain the near-inevitable recurrence after any treatment. This double-edged-sword mechanism of treatment complements the selection of preexisting resistant cells in explaining post-treatment progression. Unlike selection, the induction of a resistant state has not been systematically analyzed as an immanent cause of relapse. Here, we present a generic elemen...
Open biology, Nov 1, 2017
Colorectal cancer (CRC) has complex pathological features that defy the linear-additive reasoning... more Colorectal cancer (CRC) has complex pathological features that defy the linear-additive reasoning prevailing in current biomedicine studies. In pursuing a mechanistic understanding behind such complexity, we constructed a core molecular-cellular interaction network underlying CRC and investigated its nonlinear dynamical properties. The hypothesis and modelling method has been developed previously and tested in various cancer studies. The network dynamics reveal a landscape of several attractive basins corresponding to both normal intestinal phenotype and robust tumour subtypes, identified by their different molecular signatures. Comparison between the modelling results and gene expression profiles from patients collected at the second affiliated hospital of Zhejiang University is presented as validation. The numerical 'driving' experiment suggests that CRC pathogenesis may depend on pathways involved in gastrointestinal track development and molecules associated with mesench...
Briefings in Functional Genomics and Proteomics, 2004
Proceedings of the National Academy of Sciences of the United States of America, Feb 28, 2017
Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types... more Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the...
Oncotarget, Jan 19, 2016
The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents ... more The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also reveale...
Single-cell analyses of transcript and protein expression profiles - more precisely, single-cell ... more Single-cell analyses of transcript and protein expression profiles - more precisely, single-cell resolution analysis of molecular profiles of cell populations - have now entered center stage with the wide application of single-cell qPCR, single-cell RNA-Seq and CytOF. These high-dimensional population snapshots techniques are complemented by low-dimensional time-resolved microscopy-based monitoring methods of individual cells. Both fronts of advance have exposed a rich heterogeneity of cell states within uniform cell populations in many biological contexts, producing a new kind of data that has stimulated a series of computational analysis methods for data visualization, dimensionality reduction, and "cluster"(subpopulation) identification. The next step is to go beyond collecting data and correlating data points with computational analyses: to connect the dots, that is, to understand what actually underlies the identified data patterns. This entails interpreting the "...
Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage requi... more Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage requires broad changes of their gene expression profile. However, how progenitor cells overcome the stability of their robust gene expression configuration (attractor) and exit their state remains elusive. Here we show that commitment of blood progenitor cells to the erythroid or the myeloid lineage is preceded by the destabilization of their high-dimensional attractor state and that cells undergo a critical state transition. Single-cell resolution analysis of gene expression in populations of differentiating cells affords a new quantitative index for predicting critical transitions in a high-dimensional state space: decrease of correlation between cells with concomitant increase of correlation between genes as cells approach a tipping point. The detection of “rebellious cells” which enter the fate opposite to the one intended corroborates the model of preceding destabilization of the progeni...
PloS one, 2015
Breast cancer stem cells (CSCs) are thought to drive recurrence and metastasis. Their identity ha... more Breast cancer stem cells (CSCs) are thought to drive recurrence and metastasis. Their identity has been linked to the epithelial to mesenchymal transition (EMT) but remains highly controversial since-depending on the cell-line studied-either epithelial (E) or mesenchymal (M) markers, alone or together have been associated with stemness. Using distinct transcript expression signatures characterizing the three different E, M and hybrid E/M cell-types, our data support a novel model that links a mixed EM signature with stemness in 1) individual cells, 2) luminal and basal cell lines, 3) in vivo xenograft mouse models, and 4) in all breast cancer subtypes. In particular, we found that co-expression of E and M signatures was associated with poorest outcome in luminal and basal breast cancer patients as well as with enrichment for stem-like cells in both E and M breast cell-lines. This link between a mixed EM expression signature and stemness was explained by two findings: first, mixed cu...
BMC cell biology, Jan 28, 2006
Cell differentiation has long been theorized to represent a switch in a bistable system, and rece... more Cell differentiation has long been theorized to represent a switch in a bistable system, and recent experimental work in micro-organisms has revealed bistable dynamics in small gene regulatory circuits. However, the dynamics of mammalian cell differentiation has not been analyzed with respect to bistability. Here we studied how HL60 promyelocytic precursor cells transition to the neutrophil cell lineage after stimulation with the differentiation inducer, dimethyl sulfoxide (DMSO). Single cell analysis of the expression kinetics of the differentiation marker CD11b (Mac-1) revealed all-or-none switch-like behavior, in contrast to the seemingly graduated change of expression when measured as a population average. Progression from the precursor to the differentiated state was detected as a discrete transition between low (CD11bLow) and high (CD11bHigh) expressor subpopulations distinguishable in a bimodal distribution. Hysteresis in the dependence of CD11b expression on DMSO dose sugges...
Topics in Biomedical Engineering International Book Series
European journal of immunology, 2014
Recent advances in understanding CD4(+) T-cell differentiation suggest that previous models of a ... more Recent advances in understanding CD4(+) T-cell differentiation suggest that previous models of a few distinct, stable effector phenotypes were too simplistic. Although several well-characterized phenotypes are still recognized, some states display plasticity, and intermediate phenotypes exist. As a framework for reexamining these concepts, we use Waddington's landscape paradigm, augmented with explicit consideration of stochastic variations. Our animation program "LAVA" visualizes T-cell differentiation as cells moving across a landscape of hills and valleys, leading to attractor basins representing stable or semistable differentiation states. The model illustrates several principles, including: (i) cell populations may behave more predictably than individual cells; (ii) analogous to reticulate evolution, differentiation may proceed through a network of interconnected states, rather than a single well-defined pathway; (iii) relatively minor changes in the barriers betw...
PLoS Computational Biology, 2012
Philosophical Transactions of the Royal Society B: Biological Sciences, 2011
Stem cell behaviours, such as stabilization of the undecided state of pluripotency or multipotenc... more Stem cell behaviours, such as stabilization of the undecided state of pluripotency or multipotency, the priming towards a prospective fate, binary fate decisions and irreversible commitment, must all somehow emerge from a genome-wide gene-regulatory network. Its unfathomable complexity defies the standard mode of explanation that is deeply rooted in molecular biology thinking: the reduction of observables to linear deterministic molecular pathways that are tacitly taken as chains of causation. Such culture of proximate explanation that uses qualitative arguments, simple arrow–arrow schemes or metaphors persists despite the ceaseless accumulation of ‘omics’ data and the rise of systems biology that now offers precise conceptual tools to explain emergent cell behaviours from gene networks. To facilitate the embrace of the principles of physics and mathematics that underlie such systems and help to bridge the gap between the formal description of theorists and the intuition of experime...
Nature Reviews Genetics, 2009