Sarvesh Sundaram - Academia.edu (original) (raw)

Uploads

Papers by Sarvesh Sundaram

Research paper thumbnail of Interoperability in Smart Manufacturing: Research Challenges

Machines, 2019

Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet,... more Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet, AI (Artificial Intelligence), and machine learning have driven the evolution of manufacturing architectures into integrated networks of automation devices, services, and enterprises. One of the resulting challenges of this evolution is the increased need for interoperability at different levels of the manufacturing ecosystem. The scope ranges from shop–floor software, devices, and control systems to Internet-based cloud-platforms, providing various services on-demand. Successful implementation of interoperability in smart manufacturing would, thus, result in effective communication and error-prone data-exchange between machines, sensors, actuators, users, systems, and platforms. A significant challenge to this is the architecture and the platforms that are used by machines and software packages. A better understanding of the subject can be achieved by studying industry-specific communic...

Research paper thumbnail of Smart Prognostics and Health Management (SPHM) in Smart Manufacturing: An Interoperable Framework

Sensors, 2021

Advances in the manufacturing industry have led to modern approaches such as Industry 4.0, Cyber-... more Advances in the manufacturing industry have led to modern approaches such as Industry 4.0, Cyber-Physical Systems, Smart Manufacturing (SM) and Digital Twins. The traditional manufacturing architecture that consisted of hierarchical layers has evolved into a hierarchy-free network in which all the areas of a manufacturing enterprise are interconnected. The field devices on the shop floor generate large amounts of data that can be useful for maintenance planning. Prognostics and Health Management (PHM) approaches use this data and help us in fault detection and Remaining Useful Life (RUL) estimation. Although there is a significant amount of research primarily focused on tool wear prediction and Condition-Based Monitoring (CBM), there is not much importance given to the multiple facets of PHM. This paper conducts a review of PHM approaches, the current research trends and proposes a three-phased interoperable framework to implement Smart Prognostics and Health Management (SPHM). The ...

Research paper thumbnail of Interoperability in Smart Manufacturing: Research Challenges

Machines, 2019

Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet,... more Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet, AI (Artificial Intelligence), and machine learning have driven the evolution of manufacturing architectures into integrated networks of automation devices, services, and enterprises. One of the resulting challenges of this evolution is the increased need for interoperability at different levels of the manufacturing ecosystem. The scope ranges from shop–floor software, devices, and control systems to Internet-based cloud-platforms, providing various services on-demand. Successful implementation of interoperability in smart manufacturing would, thus, result in effective communication and error-prone data-exchange between machines, sensors, actuators, users, systems, and platforms. A significant challenge to this is the architecture and the platforms that are used by machines and software packages. A better understanding of the subject can be achieved by studying industry-specific communic...

Research paper thumbnail of Smart Prognostics and Health Management (SPHM) in Smart Manufacturing: An Interoperable Framework

Sensors, 2021

Advances in the manufacturing industry have led to modern approaches such as Industry 4.0, Cyber-... more Advances in the manufacturing industry have led to modern approaches such as Industry 4.0, Cyber-Physical Systems, Smart Manufacturing (SM) and Digital Twins. The traditional manufacturing architecture that consisted of hierarchical layers has evolved into a hierarchy-free network in which all the areas of a manufacturing enterprise are interconnected. The field devices on the shop floor generate large amounts of data that can be useful for maintenance planning. Prognostics and Health Management (PHM) approaches use this data and help us in fault detection and Remaining Useful Life (RUL) estimation. Although there is a significant amount of research primarily focused on tool wear prediction and Condition-Based Monitoring (CBM), there is not much importance given to the multiple facets of PHM. This paper conducts a review of PHM approaches, the current research trends and proposes a three-phased interoperable framework to implement Smart Prognostics and Health Management (SPHM). The ...