Suraj Ravi - Academia.edu (original) (raw)
Passionate Electrical Engineer
less
Uploads
Papers by Suraj Ravi
International Journal of Applied Power Engineering (IJAPE)
The photovoltaic (PV) system comprises one or more solar panels, a converter/inverter, controller... more The photovoltaic (PV) system comprises one or more solar panels, a converter/inverter, controllers, and other mechanical and electrical elements that utilize the generated electrical energy by the PV modules. The PV systems are ranged from small roofs or transportable units to massive electric utility plants. The maximum power point tracking (MPPT) controller has been used in PV systems to get the maximum power available. In addition, the MPPT controller is much essential for PV systems to protect the battery devices or direct loads from the power fluctuations received from solar PV panels. There are several MPPT control mechanisms available right now. The most common and commonly applied approaches under constant irradiance are perturb and observe (P&O) and incremental conductance (INC). But such methods show variations in the maximum power point. In this sense, this paper analyses and utilizes two recent metaheuristic algorithms called artificial rabbit optimization (ARO) and the ...
International Journal of Applied Power Engineering (IJAPE)
In this study, a battery energy management system for electric vehicle (EV) applications is propo... more In this study, a battery energy management system for electric vehicle (EV) applications is proposed with a standalone photovoltaic (PV) source and controlled based on the availability of grid, PV source, load consumption, and energy stored in the battery. This paper proposes a single-ended primary-inductance converter (SEPIC) DC-DC converter for charging the battery through the utility and PV source that provides good load regulation. The bidirectional nature of the proposed DC-DC converter provides the charging and discharging of the EV battery in the succeeding modes of operation, i) grid-tied charging, ii) PV-tied charging, iii) discharging to the load in the absence of utility and PV source, and iv) regenerative braking. An improved perturb and observe-based maximum power point tracking (MPPT) algorithm is proposed to track the maximum power from the PV source. In addition, to handle the four modes of operation, a dedicated controller is also proposed. Firstly, the proposed sys...
International Journal of Applied Power Engineering (IJAPE)
The photovoltaic (PV) system comprises one or more solar panels, a converter/inverter, controller... more The photovoltaic (PV) system comprises one or more solar panels, a converter/inverter, controllers, and other mechanical and electrical elements that utilize the generated electrical energy by the PV modules. The PV systems are ranged from small roofs or transportable units to massive electric utility plants. The maximum power point tracking (MPPT) controller has been used in PV systems to get the maximum power available. In addition, the MPPT controller is much essential for PV systems to protect the battery devices or direct loads from the power fluctuations received from solar PV panels. There are several MPPT control mechanisms available right now. The most common and commonly applied approaches under constant irradiance are perturb and observe (P&O) and incremental conductance (INC). But such methods show variations in the maximum power point. In this sense, this paper analyses and utilizes two recent metaheuristic algorithms called artificial rabbit optimization (ARO) and the ...
International Journal of Applied Power Engineering (IJAPE)
In this study, a battery energy management system for electric vehicle (EV) applications is propo... more In this study, a battery energy management system for electric vehicle (EV) applications is proposed with a standalone photovoltaic (PV) source and controlled based on the availability of grid, PV source, load consumption, and energy stored in the battery. This paper proposes a single-ended primary-inductance converter (SEPIC) DC-DC converter for charging the battery through the utility and PV source that provides good load regulation. The bidirectional nature of the proposed DC-DC converter provides the charging and discharging of the EV battery in the succeeding modes of operation, i) grid-tied charging, ii) PV-tied charging, iii) discharging to the load in the absence of utility and PV source, and iv) regenerative braking. An improved perturb and observe-based maximum power point tracking (MPPT) algorithm is proposed to track the maximum power from the PV source. In addition, to handle the four modes of operation, a dedicated controller is also proposed. Firstly, the proposed sys...