Theresia Reding Graf - Academia.edu (original) (raw)
Uploads
Papers by Theresia Reding Graf
British Journal of Pharmacology
Gut, Sep 3, 2017
Chronic pancreatitis (CP) and autoimmune pancreatitis (AIP) are characterised by different inflam... more Chronic pancreatitis (CP) and autoimmune pancreatitis (AIP) are characterised by different inflammatory processes. If pancreatic inflammation is a prerequisite for autoimmunity is still unclear. AIP is considered mostly a T cell-mediated disease; however, in induction of CP, macrophages play a pivotal role. p21-a member of cyclin-dependent kinase inhibitors-can influence inflammatory processes, in particular can regulate T cell activation and promote macrophage development. We therefore examined the role of p21-mediated inflammation in AIP. We intercrossed lymphotoxin (LT) overexpressing mice (Tg(Ela1-LTa,b))-a model to study AIP development-with p21-deficient mice. Furthermore, we characterised p21 expression in human AIP and non-AIP specimens. p21 deficiency in LT mice (LTp21(-/-)) prevented early pancreatic injury and reduced inflammation. In acinar cells, diminished proliferation and abrogated activation of non-canonical nuclear factor kappa-light-chain-enhancer of activated B c...
Molecular Endocrinology, Nov 1, 1991
The Journal of Pathology, 2015
Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is c... more Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.
British Journal of Pharmacology
Gut, Sep 3, 2017
Chronic pancreatitis (CP) and autoimmune pancreatitis (AIP) are characterised by different inflam... more Chronic pancreatitis (CP) and autoimmune pancreatitis (AIP) are characterised by different inflammatory processes. If pancreatic inflammation is a prerequisite for autoimmunity is still unclear. AIP is considered mostly a T cell-mediated disease; however, in induction of CP, macrophages play a pivotal role. p21-a member of cyclin-dependent kinase inhibitors-can influence inflammatory processes, in particular can regulate T cell activation and promote macrophage development. We therefore examined the role of p21-mediated inflammation in AIP. We intercrossed lymphotoxin (LT) overexpressing mice (Tg(Ela1-LTa,b))-a model to study AIP development-with p21-deficient mice. Furthermore, we characterised p21 expression in human AIP and non-AIP specimens. p21 deficiency in LT mice (LTp21(-/-)) prevented early pancreatic injury and reduced inflammation. In acinar cells, diminished proliferation and abrogated activation of non-canonical nuclear factor kappa-light-chain-enhancer of activated B c...
Molecular Endocrinology, Nov 1, 1991
The Journal of Pathology, 2015
Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is c... more Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.