Thomas Roddy - Academia.edu (original) (raw)
Papers by Thomas Roddy
Journal of the American Society of Nephrology : JASN, Jan 22, 2016
Two common missense variants inAPOL1(G1 and G2) have been definitively linked to CKD in black Ame... more Two common missense variants inAPOL1(G1 and G2) have been definitively linked to CKD in black Americans. However, not all individuals with the renal-risk genotype develop CKD, and little is known about howAPOL1variants drive disease. Given the association of APOL1 with HDL particles, which are cleared by the kidney, differences in the level or quality of mutant APOL1‑HDL particles could be causal for disease and might serve as a useful risk stratification marker. We measured plasma levels of G0 (low risk), G1, and G2 APOL1 in 3450 individuals in the Dallas Heart Study using a liquid chromatography-MS method that enabled quantitation of the different variants. Additionally, we characterized native APOL1‑HDL from donors with no or twoAPOL1risk alleles by size-exclusion chromatography and analysis of immunopurified APOL1‑HDL particles. Finally, we identified genetic loci associated with plasma APOL1 levels and tested forAPOL1-dependent association with renal function. Although we repli...
Analytical Chemistry, Dec 1, 2002
As an alternative to the T-type injection on microchips, optically gated sample introduction prev... more As an alternative to the T-type injection on microchips, optically gated sample introduction previously has been demonstrated to provide fast, serial, and reproducible injections on a single-channel microchip. Here, the ability to perform high throughput, multichannel analysis with optically gated sample introduction is described using a voice coil actuator. The microchip is fixed on a stage, which moves back and forth via the voice coil actuator, scanning two laser beams across the channels on the microchip. For parallel analysis on a multichannel microchip, both the gating beam and the probe beam are scanned at 10 Hz to perform multiple injections and parallel detection. Simultaneous, fast separations of 4-choloro-7-nitrobenzofurazan (NBD)-labeled amino acids are demonstrated in multiple channels on a microchip. Serial separations of different samples in multiple channels are also reported. Optically gated sample introduction on multiple, parallel channels shows the potential for high-speed, high-throughput separations that are easily automated by using a single electronic shutter.
Circulation, Nov 23, 2010
Journal of Separation Science, Feb 1, 2004
European Journal of Pharmacology, 2015
Journal of chromatography. B, Biomedical sciences and applications, Jan 18, 1997
Fibroblast growth factors are a series of well characterized proteins that have intriguing pharma... more Fibroblast growth factors are a series of well characterized proteins that have intriguing pharmacological properties. Acidic fibroblast growth factor (aFGF) recently appeared in the literature for its efficacy in spinal cord repair in rats. The protein has proven difficult to analyze by capillary electrophoresis, because it has a tendency to unfold, aggregate and precipitate, especially near and above physiological temperatures. By studying the turbidity of capillary electrophoresis running buffers and aFGF at 50 degrees C, conditions were found that stabilize the aFGF solution, thereby allowing the capillary electrophoretic separation of the protein from its recombinant production impurities. The buffer system employs 50 mM phosphate buffer at pH 2.5 with 0.25% hydroxypropylmethylcellulose (HPMC) additive. This system provided the best efficiency and selectivity of the systems studied and was developed for pharmaceutical purity analysis.
Bioanalysis, 2014
Measuring endogenous levels of incretin hormones, like GLP-1, is critical in the development of a... more Measuring endogenous levels of incretin hormones, like GLP-1, is critical in the development of antidiabetic compounds. However, the assays used to measure these molecules often have analytical issues. We have developed an ultrasensitive, highly-selective immunoaffinity LC-MS/MS (IA LC-MS/MS) assay capable of quantitating endogenous levels of active (7-36 amide) and inactive (9-36 amide) GLP-1 in human plasma. We performed fit-for-purpose validation of the assay by assessing the following assay performance characteristics: inter-assay precision, sensitivity, spike recovery, dilution linearity, absolute recovery, matrix effect, immunoprecipitation efficiency, and food effect. We have developed a robust analytical method for the quantitation of endogenous active and inactive GLP-1 in human plasma. In addition, we employed this method to measure the typical changes in GLP-1 levels after food intake. The sensitivity of this assay is better than another LC-MS/MS GLP-1 assay previously reported and many commercially available immunoassays. This important analytical tool could be used to qualify and/or harmonize the different immunoassays used for the quantitation of GLP-1.
Obesity, 2013
Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransfera... more Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L. Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models. Compounds K and L, dose-dependently inhibits post-prandial TG excursion in mouse and dog models. Weight loss studies in WT and Dgat1(-/-) mice, confirmed that the effects of compound K on body weight loss is mechanism-based. Compounds K and L altered incretin peptide release following oral fat challenge. Immunohistochemical studies with intestinal tissues demonstrate lack of detectable DGAT1 immunoreactivity in enteroendocrine cells. Furthermore, (13) C-fatty acid tracing studies indicate that compound K inhibition of DGAT1 increased the production of phosphatidyl choline (PC). Treatment with DGAT1 inhibitors improves lipid metabolism and body weight. DGAT1 inhibition leads to enhanced PC production via alternative carbon channeling. Immunohistological studies suggest that DGAT1 inhibitor's effects on plasma gut peptide levels are likely via an indirect mechanism. Overall these data indicate a translational potential towards the clinic.
Journal of Separation Science, 2004
Journal of Proteome Research, 2012
Intracellular proteins are in a state of flux, continually being degraded into amino acids and re... more Intracellular proteins are in a state of flux, continually being degraded into amino acids and resynthesized into new proteins. The rate of this biochemical recycling process varies across proteins and is emerging as an important consideration in drug discovery and development. Here, we developed a triple-stage quadrupole mass spectrometry assay based on product ion measurements at unit resolution and H(2)(18)O stable tracer incorporation to measure relative protein synthesis rates. As proof of concept, we selected to measure the relative in vivo synthesis rate of ApoB100, an apolipoprotein where elevated levels are associated with an increased risk of coronary heart disease, in plasma-isolated very low density lipoprotein (VLDL) and low density lipoprotein (LDL) in a mouse in vivo model. In addition, serial time points were acquired to measure the relative in vivo synthesis rate of mouse LDL ApoB100 in response to vehicle, microsomal triacylglycerol transfer protein (MTP) inhibitor, and site-1 protease inhibitor, two potential therapeutic targets to reduce plasma ApoB100 levels at 2 and 6 h post-tracer-injection. The combination of H(2)(18)O tracer with the triple quadrupole mass spectrometry platform creates an assay that is relatively quick and inexpensive to transfer across different biological model systems, serving as an ideal rapid screening tool for relative protein synthesis in response to treatment.
The Journal of Lipid Research, 2013
European Journal of Pharmacology, 2014
Inhibition of cholesteryl ester transfer protein (CETP) has been vigorously pursued as a potentia... more Inhibition of cholesteryl ester transfer protein (CETP) has been vigorously pursued as a potential therapy to treat patients who are at an elevated risk for coronary artery disease. Anacetrapib, a novel CETP inhibitor, has been shown clinically to raise HDL cholesterol and reduce LDL cholesterol when provided as monotherapy or when co-administered with a statin. Preclinically, the effects of anacetrapib on the functionality and composition of HDL have been extensively studied. In contrast, the effects of anacetrapib on other parameters related to lipoprotein metabolism and cardiovascular risk have been difficult to explore. The aim of the present investigation was to evaluate the effects of anacetrapib in rhesus macaques and to compare these to effects reported in dyslipidemic humans. Our results from two separate studies show that administration of anacetrapib (150 mg/kg q.d. for 10 days) to rhesus macaques results in alterations in CETP activity (reduced by more than 70%) and HDL cholesterol (increased by more than 110%) which are similar to those reported in dyslipidemic humans. Levels of LDL cholesterol were reduced by more than 60%, an effect slightly greater than what has been observed clinically. Treatment with anacetrapib in this model was also found to lead to statistically significant reductions in plasma PCSK9 and to reduce cholesterol excursion in the combined chylomicron and remnant lipoprotein fraction isolated from plasma by fast protein liquid chromatography. Collectively, these data suggest that rhesus macaques may be a useful translational model to study the mechanistic effects of CETP inhibition.
ELECTROPHORESIS, 2004
Capillary electrophoresis (CE) has been established as powerful tool for single cell analysis. Ne... more Capillary electrophoresis (CE) has been established as powerful tool for single cell analysis. Newly developed sampling, separation and detection methods have allowed the investigation of single mammalian cells with CE despite their small size and complex composition. Advances in sample injection techniques include several novel methods for the injection of whole cells and sampling techniques for the study of cellular secretion. CE of single mammalian cells has been applied in a wide range of fields including protein analysis, neuroscience, and oncology. The development of new detection schemes in the analysis of single mammalian cells with CE has included studies of protein expression and the utilization of mass spectrometric and electrochemical detection. Subcellular mammalian cell analysis with CE also has been investigated.
Circulation: Cardiovascular Genetics, 2013
Analytical Chemistry, 2001
Separations have been achieved in 770- and 430-nm-inner diameter capillaries. The extremely low s... more Separations have been achieved in 770- and 430-nm-inner diameter capillaries. The extremely low sample volumes involved in the study of biological microenvironments such as single cells has led to the desire to develop separation techniques in these ultrasmall capillaries. Total sample volumes as low as 12 fL have been injected using these nanometer inner diameter capillaries. Separations of several catecholamines have been accomplished in these submicrometer capillaries using both capillary zone electrophoresis and micellar electrokinetic chromatography with end-column amperometric detection.
Analytical Chemistry, 2007
Analytical Chemistry, Sep 1, 2003
Analytical Chemistry, 2002
Journal of the American Society of Nephrology : JASN, Jan 22, 2016
Two common missense variants inAPOL1(G1 and G2) have been definitively linked to CKD in black Ame... more Two common missense variants inAPOL1(G1 and G2) have been definitively linked to CKD in black Americans. However, not all individuals with the renal-risk genotype develop CKD, and little is known about howAPOL1variants drive disease. Given the association of APOL1 with HDL particles, which are cleared by the kidney, differences in the level or quality of mutant APOL1‑HDL particles could be causal for disease and might serve as a useful risk stratification marker. We measured plasma levels of G0 (low risk), G1, and G2 APOL1 in 3450 individuals in the Dallas Heart Study using a liquid chromatography-MS method that enabled quantitation of the different variants. Additionally, we characterized native APOL1‑HDL from donors with no or twoAPOL1risk alleles by size-exclusion chromatography and analysis of immunopurified APOL1‑HDL particles. Finally, we identified genetic loci associated with plasma APOL1 levels and tested forAPOL1-dependent association with renal function. Although we repli...
Analytical Chemistry, Dec 1, 2002
As an alternative to the T-type injection on microchips, optically gated sample introduction prev... more As an alternative to the T-type injection on microchips, optically gated sample introduction previously has been demonstrated to provide fast, serial, and reproducible injections on a single-channel microchip. Here, the ability to perform high throughput, multichannel analysis with optically gated sample introduction is described using a voice coil actuator. The microchip is fixed on a stage, which moves back and forth via the voice coil actuator, scanning two laser beams across the channels on the microchip. For parallel analysis on a multichannel microchip, both the gating beam and the probe beam are scanned at 10 Hz to perform multiple injections and parallel detection. Simultaneous, fast separations of 4-choloro-7-nitrobenzofurazan (NBD)-labeled amino acids are demonstrated in multiple channels on a microchip. Serial separations of different samples in multiple channels are also reported. Optically gated sample introduction on multiple, parallel channels shows the potential for high-speed, high-throughput separations that are easily automated by using a single electronic shutter.
Circulation, Nov 23, 2010
Journal of Separation Science, Feb 1, 2004
European Journal of Pharmacology, 2015
Journal of chromatography. B, Biomedical sciences and applications, Jan 18, 1997
Fibroblast growth factors are a series of well characterized proteins that have intriguing pharma... more Fibroblast growth factors are a series of well characterized proteins that have intriguing pharmacological properties. Acidic fibroblast growth factor (aFGF) recently appeared in the literature for its efficacy in spinal cord repair in rats. The protein has proven difficult to analyze by capillary electrophoresis, because it has a tendency to unfold, aggregate and precipitate, especially near and above physiological temperatures. By studying the turbidity of capillary electrophoresis running buffers and aFGF at 50 degrees C, conditions were found that stabilize the aFGF solution, thereby allowing the capillary electrophoretic separation of the protein from its recombinant production impurities. The buffer system employs 50 mM phosphate buffer at pH 2.5 with 0.25% hydroxypropylmethylcellulose (HPMC) additive. This system provided the best efficiency and selectivity of the systems studied and was developed for pharmaceutical purity analysis.
Bioanalysis, 2014
Measuring endogenous levels of incretin hormones, like GLP-1, is critical in the development of a... more Measuring endogenous levels of incretin hormones, like GLP-1, is critical in the development of antidiabetic compounds. However, the assays used to measure these molecules often have analytical issues. We have developed an ultrasensitive, highly-selective immunoaffinity LC-MS/MS (IA LC-MS/MS) assay capable of quantitating endogenous levels of active (7-36 amide) and inactive (9-36 amide) GLP-1 in human plasma. We performed fit-for-purpose validation of the assay by assessing the following assay performance characteristics: inter-assay precision, sensitivity, spike recovery, dilution linearity, absolute recovery, matrix effect, immunoprecipitation efficiency, and food effect. We have developed a robust analytical method for the quantitation of endogenous active and inactive GLP-1 in human plasma. In addition, we employed this method to measure the typical changes in GLP-1 levels after food intake. The sensitivity of this assay is better than another LC-MS/MS GLP-1 assay previously reported and many commercially available immunoassays. This important analytical tool could be used to qualify and/or harmonize the different immunoassays used for the quantitation of GLP-1.
Obesity, 2013
Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransfera... more Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L. Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models. Compounds K and L, dose-dependently inhibits post-prandial TG excursion in mouse and dog models. Weight loss studies in WT and Dgat1(-/-) mice, confirmed that the effects of compound K on body weight loss is mechanism-based. Compounds K and L altered incretin peptide release following oral fat challenge. Immunohistochemical studies with intestinal tissues demonstrate lack of detectable DGAT1 immunoreactivity in enteroendocrine cells. Furthermore, (13) C-fatty acid tracing studies indicate that compound K inhibition of DGAT1 increased the production of phosphatidyl choline (PC). Treatment with DGAT1 inhibitors improves lipid metabolism and body weight. DGAT1 inhibition leads to enhanced PC production via alternative carbon channeling. Immunohistological studies suggest that DGAT1 inhibitor's effects on plasma gut peptide levels are likely via an indirect mechanism. Overall these data indicate a translational potential towards the clinic.
Journal of Separation Science, 2004
Journal of Proteome Research, 2012
Intracellular proteins are in a state of flux, continually being degraded into amino acids and re... more Intracellular proteins are in a state of flux, continually being degraded into amino acids and resynthesized into new proteins. The rate of this biochemical recycling process varies across proteins and is emerging as an important consideration in drug discovery and development. Here, we developed a triple-stage quadrupole mass spectrometry assay based on product ion measurements at unit resolution and H(2)(18)O stable tracer incorporation to measure relative protein synthesis rates. As proof of concept, we selected to measure the relative in vivo synthesis rate of ApoB100, an apolipoprotein where elevated levels are associated with an increased risk of coronary heart disease, in plasma-isolated very low density lipoprotein (VLDL) and low density lipoprotein (LDL) in a mouse in vivo model. In addition, serial time points were acquired to measure the relative in vivo synthesis rate of mouse LDL ApoB100 in response to vehicle, microsomal triacylglycerol transfer protein (MTP) inhibitor, and site-1 protease inhibitor, two potential therapeutic targets to reduce plasma ApoB100 levels at 2 and 6 h post-tracer-injection. The combination of H(2)(18)O tracer with the triple quadrupole mass spectrometry platform creates an assay that is relatively quick and inexpensive to transfer across different biological model systems, serving as an ideal rapid screening tool for relative protein synthesis in response to treatment.
The Journal of Lipid Research, 2013
European Journal of Pharmacology, 2014
Inhibition of cholesteryl ester transfer protein (CETP) has been vigorously pursued as a potentia... more Inhibition of cholesteryl ester transfer protein (CETP) has been vigorously pursued as a potential therapy to treat patients who are at an elevated risk for coronary artery disease. Anacetrapib, a novel CETP inhibitor, has been shown clinically to raise HDL cholesterol and reduce LDL cholesterol when provided as monotherapy or when co-administered with a statin. Preclinically, the effects of anacetrapib on the functionality and composition of HDL have been extensively studied. In contrast, the effects of anacetrapib on other parameters related to lipoprotein metabolism and cardiovascular risk have been difficult to explore. The aim of the present investigation was to evaluate the effects of anacetrapib in rhesus macaques and to compare these to effects reported in dyslipidemic humans. Our results from two separate studies show that administration of anacetrapib (150 mg/kg q.d. for 10 days) to rhesus macaques results in alterations in CETP activity (reduced by more than 70%) and HDL cholesterol (increased by more than 110%) which are similar to those reported in dyslipidemic humans. Levels of LDL cholesterol were reduced by more than 60%, an effect slightly greater than what has been observed clinically. Treatment with anacetrapib in this model was also found to lead to statistically significant reductions in plasma PCSK9 and to reduce cholesterol excursion in the combined chylomicron and remnant lipoprotein fraction isolated from plasma by fast protein liquid chromatography. Collectively, these data suggest that rhesus macaques may be a useful translational model to study the mechanistic effects of CETP inhibition.
ELECTROPHORESIS, 2004
Capillary electrophoresis (CE) has been established as powerful tool for single cell analysis. Ne... more Capillary electrophoresis (CE) has been established as powerful tool for single cell analysis. Newly developed sampling, separation and detection methods have allowed the investigation of single mammalian cells with CE despite their small size and complex composition. Advances in sample injection techniques include several novel methods for the injection of whole cells and sampling techniques for the study of cellular secretion. CE of single mammalian cells has been applied in a wide range of fields including protein analysis, neuroscience, and oncology. The development of new detection schemes in the analysis of single mammalian cells with CE has included studies of protein expression and the utilization of mass spectrometric and electrochemical detection. Subcellular mammalian cell analysis with CE also has been investigated.
Circulation: Cardiovascular Genetics, 2013
Analytical Chemistry, 2001
Separations have been achieved in 770- and 430-nm-inner diameter capillaries. The extremely low s... more Separations have been achieved in 770- and 430-nm-inner diameter capillaries. The extremely low sample volumes involved in the study of biological microenvironments such as single cells has led to the desire to develop separation techniques in these ultrasmall capillaries. Total sample volumes as low as 12 fL have been injected using these nanometer inner diameter capillaries. Separations of several catecholamines have been accomplished in these submicrometer capillaries using both capillary zone electrophoresis and micellar electrokinetic chromatography with end-column amperometric detection.
Analytical Chemistry, 2007
Analytical Chemistry, Sep 1, 2003
Analytical Chemistry, 2002