Tinsae Gebrechristos Dulecha - Academia.edu (original) (raw)

Uploads

Papers by Tinsae Gebrechristos Dulecha

Research paper thumbnail of State‐of‐the‐art in Multi‐Light Image Collections for Surface Visualization and Analysis

Computer Graphics Forum

Multi-Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed vi... more Multi-Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination, provide large amounts of visual and geometric information. In this survey, we provide an up-to-date integrative view of MLICs as a mean to gain insight on objects through the analysis and visualization of the acquired data. After a general overview of MLICs capturing and storage, we focus on the main approaches to produce representations usable for visualization and analysis. In this context, we first discuss methods for direct exploration of the raw data. We then summarize approaches that strive to emphasize shape and material details by fusing all acquisitions in a single enhanced image. Subsequently, we focus on approaches that produce relightable images through intermediate representations. This can be done both by fitting various analytic forms of the light transform function, or by locally estimating the parameters of physically plausible models of shape and reflectance and using them for visualization and analysis. We finally review techniques that improve object understanding by using illustrative approaches to enhance relightable models, or by extracting features and derived maps. We also review how these methods are applied in several, main application domains, and what are the available tools to perform MLIC visualization and analysis. We finally point out relevant research issues, analyze research trends, and offer guidelines for practical applications. CCS Concepts • General and reference → Surveys and overviews; • Human-centered computing → Visualization systems and tools; • Computing methodologies → Computer vision representations; Reflectance modeling;

Research paper thumbnail of Neural reflectance transformation imaging

The Visual Computer

Reflectance transformation imaging (RTI) is a computational photography technique widely used in ... more Reflectance transformation imaging (RTI) is a computational photography technique widely used in the cultural heritage and material science domains to characterize relieved surfaces. It basically consists of capturing multiple images from a fixed viewpoint with varying lights. Handling the potentially huge amount of information stored in an RTI acquisition that consists typically of 50–100 RGB values per pixel, allowing data exchange, interactive visualization, and material analysis, is not easy. The solution used in practical applications consists of creating “relightable images” by approximating the pixel information with a function of the light direction, encoded with a small number of parameters. This encoding allows the estimation of images relighted from novel, arbitrary lights, with a quality that, however, is not always satisfactory. In this paper, we present NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. Using a simple autoencoder architecture, ...

Research paper thumbnail of State‐of‐the‐art in Multi‐Light Image Collections for Surface Visualization and Analysis

Computer Graphics Forum

Multi-Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed vi... more Multi-Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination, provide large amounts of visual and geometric information. In this survey, we provide an up-to-date integrative view of MLICs as a mean to gain insight on objects through the analysis and visualization of the acquired data. After a general overview of MLICs capturing and storage, we focus on the main approaches to produce representations usable for visualization and analysis. In this context, we first discuss methods for direct exploration of the raw data. We then summarize approaches that strive to emphasize shape and material details by fusing all acquisitions in a single enhanced image. Subsequently, we focus on approaches that produce relightable images through intermediate representations. This can be done both by fitting various analytic forms of the light transform function, or by locally estimating the parameters of physically plausible models of shape and reflectance and using them for visualization and analysis. We finally review techniques that improve object understanding by using illustrative approaches to enhance relightable models, or by extracting features and derived maps. We also review how these methods are applied in several, main application domains, and what are the available tools to perform MLIC visualization and analysis. We finally point out relevant research issues, analyze research trends, and offer guidelines for practical applications. CCS Concepts • General and reference → Surveys and overviews; • Human-centered computing → Visualization systems and tools; • Computing methodologies → Computer vision representations; Reflectance modeling;

Research paper thumbnail of Neural reflectance transformation imaging

The Visual Computer

Reflectance transformation imaging (RTI) is a computational photography technique widely used in ... more Reflectance transformation imaging (RTI) is a computational photography technique widely used in the cultural heritage and material science domains to characterize relieved surfaces. It basically consists of capturing multiple images from a fixed viewpoint with varying lights. Handling the potentially huge amount of information stored in an RTI acquisition that consists typically of 50–100 RGB values per pixel, allowing data exchange, interactive visualization, and material analysis, is not easy. The solution used in practical applications consists of creating “relightable images” by approximating the pixel information with a function of the light direction, encoded with a small number of parameters. This encoding allows the estimation of images relighted from novel, arbitrary lights, with a quality that, however, is not always satisfactory. In this paper, we present NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. Using a simple autoencoder architecture, ...

Log In