Todd Davidson - Academia.edu (original) (raw)
Papers by Todd Davidson
Regulatory Toxicology and Pharmacology, 2018
Protein therapeutics represent a rapidly growing proportion of new medicines being developed by t... more Protein therapeutics represent a rapidly growing proportion of new medicines being developed by the pharmaceutical industry. As with any new drug, an Occupational Exposure Limit (OEL) should be developed to ensure worker safety. Part of the OEL determination addresses bioavailability (BA) after inhalation, which is poorly understood for protein therapeutics. To explore this, male Sprague-Dawley rats were exposed intravenously or by nose-only inhalation to one of five test proteins of varying molecular size (10-150 kDa), including a polyethylene glycol-conjugated protein. Blood, lung tissue and bronchoalveolar lavage (BAL) fluid were collected over various time-points depending on the expected test protein clearance (8 minutes-56 days), and analyzed to determine the pharmacokinetic profiles. Since the BAL half-life of the test proteins was observed to be >4.5 hours after an inhalation exposure, accumulation and direct lung effects should be considered in the hazard assessment for protein therapeutics with lung-specific targets. The key finding was the low systemic bioavailability after inhalation exposure for all test proteins (~≤1%) which did not appear molecular weight-dependent. Given that this study examined the inhalation of typical protein therapeutics in a manner mimicking worker exposure, a default 1% BA assumption is reasonable to utilize when calculating OELs for protein therapeutics.
General and Applied Toxicology, 2009
Dose–Response, one of the primary underlying principles of toxicology, also provides us with the ... more Dose–Response, one of the primary underlying principles of toxicology, also provides us with the basis for risk assessment. It is the process of determining the point at which the response changes from an acceptable endpoint to an unacceptable one. This chapter describes the terminology used to describe some of the parameters used in risk assessment, including the concept of a threshold. Additionally, we discuss the validity of specific studies, the relevance of their endpoints to humans and the applicability of different routes of exposure to risk assessment. The process of assembling available data for review and evaluation is also discussed, as are sources of uncertainty and the different methods used in deriving risk values. Finally, the acceptability of risk is discussed as one of the critical variables in the risk-assessment process. Keywords: threshold; nonthreshold; endpoint of concern; critical effect; point of departure; benchmark dose; margin of safety; sensitive subpopulation; genetic polymorphisms; low dose extrapolation; uncertainty factor
Chemosphere, 2019
Metformin (MET) is a pharmaceutical with very high use worldwide that is excreted in unchanged fo... more Metformin (MET) is a pharmaceutical with very high use worldwide that is excreted in unchanged form, leading to concern about potential aquatic life impacts associated with MET, and its primary transformation product guanylurea (GUU). This study presents, in two companion papers, a risk assessment following internationally accepted guidelines of MET and GUU in surface water based on literature data, previously unpublished studies, and a new degradation test that resolves conflicting earlier results. Previous studies have shown that MET is removed during sewage treatment, primarily through transformation to GUU. In addition, measurements in WWTPs suggest that MET is not only transformed to GUU, but that GUU is further biodegraded. A prolonged inherent biodegradation test strongly suggests not only primary transformation of MET to GUU, but also subsequent full mineralization of GUU, with both degradation phases starting after a clear lag phase. MET may partition from surface water to sediment, where both transformation to GUU and in part mineralization is possible, depending on the presence of competent degrading microorganisms. In addition, MET may form non-extractable residues in sediments (12.8-73.5%). Both MET and GUU may be anaerobically degraded during sludge digestion, in soils or in sediments. Bioconcentration factor (BCF) values in crops and most plants are close to 1 suggesting low bioaccumulation potential, moreover, at least some plants can metabolize MET to GUU; however, in aquatic plants higher BCFs were found, up to 53. Similarly, neither MET nor GUU are expected to bioaccumulate in fish based on estimated values of BCFs ≤3.16.
Environmental toxicology and chemistry / SETAC, Jan 25, 2015
For many older pharmaceuticals, chronic aquatic toxicity data are limited. To assess risk during ... more For many older pharmaceuticals, chronic aquatic toxicity data are limited. To assess risk during development, scale-up and manufacturing processes, acute data and physicochemical properties need to be leveraged to reduce potential long-term impacts to the environment. Aquatic toxicity data were pooled from daphnid, fish and algae studies for 102 active pharmaceutical ingredients (APIs) to evaluate the relationship between predicted no-effect concentrations (PNECs) derived from acute and chronic tests. The relationships between acute and chronic aquatic toxicity and the n-octanol/water distribution coefficient were also characterized. Statistically significant but weak correlations were observed between toxicity and log Dow, indicating Dow is not the only contributor to toxicity. Both acute and chronic PNEC values could be calculated for 60 of the 102 APIs. For most compounds, PNECs derived from acute data were lower than PNECs derived from chronic data, with the exception of steroid...
Environmental Health Perspectives Supplements, Nov 1, 2002
Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as ... more Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as one of the pathways affected by carcinogenic nickel compounds. Acute exposure to nickel activates hypoxia-inducible transcription factor-1 (HIF-1), which strongly induces hypoxia-inducible genes, including the recently discovered tumor marker Cap43. This gene has been cloned based on its nickel inducibility and was found to be highly inducible by hypoxia. To identify other HIF-1-dependent/independent nickel-inducible genes, we used cells obtained from HIF-1α null mouse embryos and analyzed gene expression changes using the microarray technique. We found that genes coding for glycolytic enzymes, known to be regulated by HIF-1, were also induced in nickel-exposed cells. In addition, we identified a number of new genes highly induced by nickel in an HIF-dependent manner. Elevated HIF-1 activity after acute nickel exposure might be selectively advantageous because nickel-transformed rodent and human cells possess increased HIF-1 transcriptional activity. Hypoxia plays an important role in tumor progression. It selects for cells with enhanced glycolytic activity, causing production of large amounts of lactic acid, one of the most common features of tumor cells (Warburg effect). Here, we hypothesize that exposure to nickel activates the hypoxia-inducible pathway and facilitates selection of cells with increased transcriptional activity of hypoxia-inducible genes, which may be important in the nickel-induced carcinogenic process. Key words: gene chip, HIF knockout, hypoxia, transcription factors. Environ Health Perspect 110(suppl 5):831-834 (2002). http://ehpnet1.niehs.nih.gov/docs/2002/suppl-5/831-834salnikow/abstract.html
Toxicol Appl Pharmacol, 2004
Using the mouse Affymetrix gene chip, we found that 1,4-α-glucan branching enzyme 1 (GBE1) was on... more Using the mouse Affymetrix gene chip, we found that 1,4-α-glucan branching enzyme 1 (GBE1) was one of the most up-regulated genes following nickel exposure. This result was confirmed by Northern blot in two mouse cell lines, four mouse tissues, and three human cell lines. We further found that this gene was also up-regulated by cobalt, hypoxia, the iron chelator (deferoxamine, or DFO), and the prolyl hydroxylase (PH) inhibitor (dimethyloxalyglycine, DMOG), suggesting that hypoxia inducible factor-1α (HIF-1α) was involved in the up-regulation of this gene. Experiments using HIF-1α +/+ and HIF-1α −/− mouse cells demonstrated this gene was up-regulated through a HIF-1α-dependent hypoxic signaling pathway. Because the hypoxic signaling pathway is believed to be important in the initiation and progression of carcinogenesis, it is important to study genes regulated by this pathway.
Cancer Research, Jul 1, 2003
Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are ... more Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are carcinogenic, exposure to nickel represents a serious hazard to human health. The understanding of how nickel exerts its toxic and carcinogenic effects at a molecular level may be important in risk assessment, as well as in the treatment and prevention of occupational diseases. Previously, using human and rodent cells in vitro, we showed that hypoxia-inducible signaling pathway was activated by carcinogenic nickel compounds. Acute exposure to nickel resulted in the accumulation of hypoxia-inducible transcription factor (HIF)-1, which strongly activated hypoxia-inducible genes, including the recently discovered tumor marker NDRG1 (Cap43). To further identify HIF-1-dependent nickel-inducible genes and to understand the role of the HIF-dependent signaling pathway in nickel-induced transformation, we used the Affymetrix GeneChip to compare the gene expression profiles in wild-type cells or in cells from HIF-1␣ knockout mouse embryos exposed to nickel chloride. As expected, when we examined 12,000 genes for expression changes, we found that genes coding for glycolytic enzymes and glucose transporters, known to be regulated by HIF-1 transcription factor, were induced by nickel only in HIF-1␣-proficient cells. In addition, we found a number of other hypoxiainducible genes up-regulated by nickel in a HIF-dependent manner including BCL-2-binding protein Nip3, EGLN1, hypoxia-inducible gene 1 (HIG1), and prolyl 4-hydroxylase. Additionally, we found a number of genes induced by nickel in a HIF-independent manner, suggesting that Ni activated other signaling pathways besides HIF-1. Finally, we found that in HIF-1␣ knockout cells, nickel strongly induced the expression of the whole group of genes that were not expressed in the presence of HIF-1. Because the majority of modulated genes were induced or suppressed by nickel in a HIF-1-dependent manner, we elucidated the role of HIF-1 transcription factor in cell transformation. In HIF-1␣-proficient cells, nickel exposure increased soft agar growth, whereas it decreased soft agar growth in HIF-1␣-deficient cells. We hypothesize that the induction of HIF-1 transcription factor by nickel may be important during the nickelinduced carcinogenic process.
Cancer research, 2003
Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are ... more Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are carcinogenic, exposure to nickel represents a serious hazard to human health. The understanding of how nickel exerts its toxic and carcinogenic effects at a molecular level may be important in risk assessment, as well as in the treatment and prevention of occupational diseases. Previously, using human and rodent cells in vitro, we showed that hypoxia-inducible signaling pathway was activated by carcinogenic nickel compounds. Acute exposure to nickel resulted in the accumulation of hypoxia-inducible transcription factor (HIF)-1, which strongly activated hypoxia-inducible genes, including the recently discovered tumor marker NDRG1 (Cap43). To further identify HIF-1-dependent nickel-inducible genes and to understand the role of the HIF-dependent signaling pathway in nickel-induced transformation, we used the Affymetrix GeneChip to compare the gene expression profiles in wild-type cells or i...
Handbook on the Toxicology of Metals, 2015
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005
Both water soluble and insoluble nickel compounds have been implicated in the etiology of human l... more Both water soluble and insoluble nickel compounds have been implicated in the etiology of human lung and nasal cancers. Water insoluble nickel compounds have been shown to enter cells by phagocytosis and are contained in cytoplasmic vacuoles, which are acidified thus accelerating the dissolution of soluble nickel from the particles. Using Newport Green, a dye that fluoresces when ionic nickel is bound, we have shown that following exposure (48-72 h) of human lung (A549) cells to NiS particles, most of the nickel is contained in the nucleus, while cells exposed to soluble NiCl2 exhibit most of the ions localized in the cytoplasm. This effect is consistent with previously published reports showing that short-term exposure of cells to crystalline nickel particles (1-3 days) is able to epigenetically silence target genes placed near heterochromatin, while similar short-term exposure to soluble nickel compounds are not able to induce silencing of genes placed near heterochromatin. However, a 3 week exposure of cells to soluble NiCl2 is also able to induce gene silencing. A similar effect was found in yeast cells where nickel was able to silence the URA-3 gene placed near (1.3 kb) a telomere silencing element, but not when the gene was placed farther away from the silencing element (2.0 kb). In addition to epigenetic effects, nickel compounds activate hypoxia signaling pathways. The mechanism of this effect involves the ability of either soluble or insoluble nickel compounds to block iron uptake leading to cellular iron depletion, directly affect iron containing enzymes, or both. This results in the inhibition of a variety of iron-dependent enzymes, such as aconitase and the HIF proline hydroxylases (PHD1-3). The inhibition of the HIF proline hydroxylases stabilizes the HIF protein and activates hypoxic signaling. Additional studies have shown that nickel and hypoxia decrease histone acetylation and increase the methylation of H3 lysine 9. These events are involved in gene silencing and hypoxia can also cause these effects in human cells. It is hypothesised that the state of hypoxia either by low oxygen tension or as a result of agents that signal hypoxia under normal oxygen tension (iron chelation, nickel and cobalt) results in low levels of acetyl CoA, which is a substrate for histone and other protein acetylation. This effect may in part be responsible for the gene silencing following nickel exposure and during hypoxia.
Toxicology and Applied Pharmacology, 2004
Hexavalent chromium (Cr (VI)) is a well known-human carcinogen with exposures occurring in both o... more Hexavalent chromium (Cr (VI)) is a well known-human carcinogen with exposures occurring in both occupational and environmental settings. Although lung carcinogenicity has been well documented for occupational exposure via inhalation, the carcinogenic hazard of drinking water exposure to Cr (VI) has yet to be established. We used a hairless mouse model to study the effects of K(2)CrO(4) in the drinking water on ultraviolet radiation (UVR)-induced skin tumors. Hairless mice were unexposed or exposed to UVR alone (1.2 kJ/m(2)), K(2)CrO(4) alone at 2.5 and 5.0 ppm, or the combination of UVR and K(2)CrO(4) at 0.5, 2.5, and 5.0 ppm. Mice were observed on a weekly basis for the appearance of skin tumors larger than 2 mm. All the mice were euthanized on day 182. The skin tumors were excised and subsequently analyzed microscopically for malignancy by histopathology. There was a total absence of observable skin tumors in untreated mice and in mice exposed to chromate alone. However, there was a dose-dependent increase in the number of skin tumors greater than 2 mm in mice exposed to K(2)CrO(4) and UV compared with mice exposed to UV alone. The increase in tumors larger than 2 mm was statistically significant (P < 0.05) for UV and K(2)CrO(4) at the two highest K(2)CrO(4) doses (2.5 and 5.0 ppm), and there was a statistically significant increase in the numbers of malignant tumors per mouse in the UVR plus K(2)CrO(4) (5 ppm) group compared with UV alone. The data presented here indicate that K(2)CrO(4) increases the number of UV-induced skin tumors in a dose-dependent manner, and these results support the concern that regulatory agencies have relative to the carcinogenic health hazards of widespread human exposure to Cr (VI) in drinking water.
Toxicology and Applied Pharmacology, 2005
Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic respon... more Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1alpha). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic selection pressure to convert a normal initiated cell into a cancer cell.
Toxicology and Applied Pharmacology, 2007
The carcinogenic activity of various nickel (Ni) compounds is likely dependent upon their ability... more The carcinogenic activity of various nickel (Ni) compounds is likely dependent upon their ability to enter cells and elevate intracellular levels of Ni ions. Water-insoluble Ni compounds such as NiS and Ni(3)S(2) were shown in vitro to enter cells by phagocytosis and potently induce tumors in experimental animals at the site of exposure. These water-insoluble nickel compounds are generally considered to be more potent carcinogens than the water-soluble forms. However, recent in vitro studies have shown similar effects for insoluble and soluble Ni compounds. Using a dye that fluoresces when intracellular Ni ion binds to it, we showed that both soluble and insoluble Ni compounds were able to elevate the levels of Ni ions in the cytoplasmic and nuclear compartments. However, when the source of Ni ions was removed from the culture dish, the intracellular Ni ions derived from soluble Ni compound were lost from the cells at a significantly faster rate than those derived from the insoluble Ni compound. Within 10 h after NiCl(2) removal from the culture medium, Ni ions disappeared from the nucleus and were not detected in the cells by 16 h, while insoluble Ni(3)S(2) yielded Ni ions that persisted in the nucleus after 16 h and were detected in the cytoplasm even after 24 h following Ni removal. These effects are discussed in terms of whole body exposure to water-soluble and -insoluble Ni compounds and consistency with animal carcinogenicity studies.
Molecular Carcinogenesis, 2006
Soluble nickel compounds are carcinogenic to humans although the mechanism by which they cause ca... more Soluble nickel compounds are carcinogenic to humans although the mechanism by which they cause cancer remains unclear. One major consequence of exposure to nickel is the stabilization of hypoxia inducible factor-1alpha (HIF-1alpha), a protein known to be overexpressed in a variety of cancers. In this study, we report a persistent stabilization of HIF-1alpha by nickel chloride up to 72 h after the removal of nickel from the culture media. In addition, we show that the HIF-prolyl hydroxylases (PHD's) are inhibited when cells are exposed to nickel and that they remain repressed for up to 72 h after nickel is removed. We then show that nickel can inhibit purified HIF-PHD's 2 in vitro, through direct interference with the enzyme. Through theoretical calculations, we also demonstrate that nickel may be able to replace the iron in the active site of this enzyme, providing a plausible mechanism for the persistent inhibition of HIF-PHD's by nickel. The data presented suggest that nickel can interfere with HIF-PHD directly and does not inhibit the enzyme by simply depleting cellular factors, such as iron or ascorbic acid. Understanding the mechanisms by which nickel can inhibit HIF-PHD's and stabilize HIF-1alpha may be important in the treatment of cancer and ischemic diseases.
Molecular and Cellular Biochemistry, 2005
Soluble nickel compounds are likely human carcinogens. The mechanism by which soluble nickel may ... more Soluble nickel compounds are likely human carcinogens. The mechanism by which soluble nickel may contribute to carcinogenesis is unclear, though several hypotheses have been proposed. Here we verify the ability of nickel to enter the cell via the divalent metal ion transporter 1 (DMT1) and disturb cellular iron homeostasis. Nickel may interfere with iron at both an extracellular level, by preventing iron from being transported into the cell, and at an intracellular level, by competing for iron sites on enzymes like the prolyl hydroxylases that modify hypoxia inducible factor-1alpha (HIF-1alpha). Nickel was able to decrease the binding of the Von Hippel-Lindau (VHL) protein to HIF-1alpha, indicating a decrease in prolyl hydroxylase activity. The ability of nickel to affect various iron dependent processes may be an important step in nickel dependent carcinogenesis. In addition, understanding the mechanisms by which nickel activates the HIF-1alpha pathway may lead to new molecular targets in fighting cancer.
Journal of Environmental Monitoring, 2003
The carcinogenicity of nickel compounds has been shown in numerous epidemiological and animal stu... more The carcinogenicity of nickel compounds has been shown in numerous epidemiological and animal studies. Carcinogenesis is generally considered as a multistep accumulation of genetic alterations. Nickel, however, being highly carcinogenic is only a weak mutagen. We hypothesize that nickel may act by modulating signaling pathways, and subsequently by reprogramming transcription factors. Insoluble nickel is considered to be more carcinogenic than soluble. In this study using GeneChip technology we compared changes in gene expression caused by soluble and insoluble nickel compounds. We found that both soluble and insoluble nickel compounds induce similar signaling pathways following 20 h of in vitro exposure. For example, both nickel compounds activated a number of transcription factors including hypoxia-inducible factor I (HIF-1) and p53. The induction of these important transcription factors exerts potent selective pressure leading to cell transformation. The obtained data are in agreement with our previous observations that acute nickel exposure activates HIF-1 and p53 transcription factors and in nickel-transformed cells, the ratio of HIF-I activity to p53 activity was shifted towards high HIF-I activity. The activation of the same signaling pathways by soluble and insoluble nickel compounds suggested that both nickel compounds have similar carcinogenic potential in vitro.
Environmental Health Perspectives, 2002
Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as ... more Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as one of the pathways affected by carcinogenic nickel compounds. Acute exposure to nickel activates hypoxia-inducible transcription factor-1 (HIF-1), which strongly induces hypoxia-inducible genes, including the recently discovered tumor marker Cap43. This gene has been cloned based on its nickel inducibility and was found to be highly inducible by hypoxia. To identify other HIF-1-dependent/independent nickel-inducible genes, we used cells obtained from HIF-1α null mouse embryos and analyzed gene expression changes using the microarray technique. We found that genes coding for glycolytic enzymes, known to be regulated by HIF-1, were also induced in nickel-exposed cells. In addition, we identified a number of new genes highly induced by nickel in an HIF-dependent manner. Elevated HIF-1 activity after acute nickel exposure might be selectively advantageous because nickel-transformed rodent and human cells possess increased HIF-1 transcriptional activity. Hypoxia plays an important role in tumor progression. It selects for cells with enhanced glycolytic activity, causing production of large amounts of lactic acid, one of the most common features of tumor cells (Warburg effect). Here, we hypothesize that exposure to nickel activates the hypoxia-inducible pathway and facilitates selection of cells with increased transcriptional activity of hypoxia-inducible genes, which may be important in the nickel-induced carcinogenic process. Key words: gene chip, HIF knockout, hypoxia, transcription factors. Environ Health Perspect 110(suppl 5):831-834 (2002). http://ehpnet1.niehs.nih.gov/docs/2002/suppl-5/831-834salnikow/abstract.html
Biological Research, 2006
DMT1 -Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 -transports Fe 2+ into the duoden... more DMT1 -Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 -transports Fe 2+ into the duodenum and out of the endosome during the transferrin cycle. DMT1 also is important in non-transferrin bound iron uptake. It plays similar roles in Mn 2+ trafficking. Voltage clamping showed that six other metals evoked currents, but it is unclear if these metals are substrates for DMT1. This report summarizes progress on which metals DMT1 transports, focusing on results from the authors' labs. We recently cloned 1A/+IRE and 2/-IRE DMT1 isoforms to generate HEK293 cell lines that express them in a tetracycline-inducible fashion, then compared induced expression to uninduced expression and to endogenous DMT1 expression. Induced expression increases ~50x over endogenous expression and ~10x over uninduced levels. Fe 2+ , Mn 2+ , Ni 2+ and Cu 1+ or Cu 2+ are transported. We also explored competition between metal ions using this system because incorporation essentially represents DMT1 transport and find this order for transport affinity: Mn>?Cd>?Fe>Pb~Co~Ni>Zn. The effects of decreased DMT1 also could be examined. The Belgrade rat has diminished DMT1 function and thus provides ways of testing. A series of DNA constructs that generate siRNAs specific for DMT1 or certain DMT1 isoforms yield another way to test DMT1-based transport.
General and Applied Toxicology, 2009
Regulatory Toxicology and Pharmacology, 2018
Protein therapeutics represent a rapidly growing proportion of new medicines being developed by t... more Protein therapeutics represent a rapidly growing proportion of new medicines being developed by the pharmaceutical industry. As with any new drug, an Occupational Exposure Limit (OEL) should be developed to ensure worker safety. Part of the OEL determination addresses bioavailability (BA) after inhalation, which is poorly understood for protein therapeutics. To explore this, male Sprague-Dawley rats were exposed intravenously or by nose-only inhalation to one of five test proteins of varying molecular size (10-150 kDa), including a polyethylene glycol-conjugated protein. Blood, lung tissue and bronchoalveolar lavage (BAL) fluid were collected over various time-points depending on the expected test protein clearance (8 minutes-56 days), and analyzed to determine the pharmacokinetic profiles. Since the BAL half-life of the test proteins was observed to be >4.5 hours after an inhalation exposure, accumulation and direct lung effects should be considered in the hazard assessment for protein therapeutics with lung-specific targets. The key finding was the low systemic bioavailability after inhalation exposure for all test proteins (~≤1%) which did not appear molecular weight-dependent. Given that this study examined the inhalation of typical protein therapeutics in a manner mimicking worker exposure, a default 1% BA assumption is reasonable to utilize when calculating OELs for protein therapeutics.
General and Applied Toxicology, 2009
Dose–Response, one of the primary underlying principles of toxicology, also provides us with the ... more Dose–Response, one of the primary underlying principles of toxicology, also provides us with the basis for risk assessment. It is the process of determining the point at which the response changes from an acceptable endpoint to an unacceptable one. This chapter describes the terminology used to describe some of the parameters used in risk assessment, including the concept of a threshold. Additionally, we discuss the validity of specific studies, the relevance of their endpoints to humans and the applicability of different routes of exposure to risk assessment. The process of assembling available data for review and evaluation is also discussed, as are sources of uncertainty and the different methods used in deriving risk values. Finally, the acceptability of risk is discussed as one of the critical variables in the risk-assessment process. Keywords: threshold; nonthreshold; endpoint of concern; critical effect; point of departure; benchmark dose; margin of safety; sensitive subpopulation; genetic polymorphisms; low dose extrapolation; uncertainty factor
Chemosphere, 2019
Metformin (MET) is a pharmaceutical with very high use worldwide that is excreted in unchanged fo... more Metformin (MET) is a pharmaceutical with very high use worldwide that is excreted in unchanged form, leading to concern about potential aquatic life impacts associated with MET, and its primary transformation product guanylurea (GUU). This study presents, in two companion papers, a risk assessment following internationally accepted guidelines of MET and GUU in surface water based on literature data, previously unpublished studies, and a new degradation test that resolves conflicting earlier results. Previous studies have shown that MET is removed during sewage treatment, primarily through transformation to GUU. In addition, measurements in WWTPs suggest that MET is not only transformed to GUU, but that GUU is further biodegraded. A prolonged inherent biodegradation test strongly suggests not only primary transformation of MET to GUU, but also subsequent full mineralization of GUU, with both degradation phases starting after a clear lag phase. MET may partition from surface water to sediment, where both transformation to GUU and in part mineralization is possible, depending on the presence of competent degrading microorganisms. In addition, MET may form non-extractable residues in sediments (12.8-73.5%). Both MET and GUU may be anaerobically degraded during sludge digestion, in soils or in sediments. Bioconcentration factor (BCF) values in crops and most plants are close to 1 suggesting low bioaccumulation potential, moreover, at least some plants can metabolize MET to GUU; however, in aquatic plants higher BCFs were found, up to 53. Similarly, neither MET nor GUU are expected to bioaccumulate in fish based on estimated values of BCFs ≤3.16.
Environmental toxicology and chemistry / SETAC, Jan 25, 2015
For many older pharmaceuticals, chronic aquatic toxicity data are limited. To assess risk during ... more For many older pharmaceuticals, chronic aquatic toxicity data are limited. To assess risk during development, scale-up and manufacturing processes, acute data and physicochemical properties need to be leveraged to reduce potential long-term impacts to the environment. Aquatic toxicity data were pooled from daphnid, fish and algae studies for 102 active pharmaceutical ingredients (APIs) to evaluate the relationship between predicted no-effect concentrations (PNECs) derived from acute and chronic tests. The relationships between acute and chronic aquatic toxicity and the n-octanol/water distribution coefficient were also characterized. Statistically significant but weak correlations were observed between toxicity and log Dow, indicating Dow is not the only contributor to toxicity. Both acute and chronic PNEC values could be calculated for 60 of the 102 APIs. For most compounds, PNECs derived from acute data were lower than PNECs derived from chronic data, with the exception of steroid...
Environmental Health Perspectives Supplements, Nov 1, 2002
Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as ... more Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as one of the pathways affected by carcinogenic nickel compounds. Acute exposure to nickel activates hypoxia-inducible transcription factor-1 (HIF-1), which strongly induces hypoxia-inducible genes, including the recently discovered tumor marker Cap43. This gene has been cloned based on its nickel inducibility and was found to be highly inducible by hypoxia. To identify other HIF-1-dependent/independent nickel-inducible genes, we used cells obtained from HIF-1α null mouse embryos and analyzed gene expression changes using the microarray technique. We found that genes coding for glycolytic enzymes, known to be regulated by HIF-1, were also induced in nickel-exposed cells. In addition, we identified a number of new genes highly induced by nickel in an HIF-dependent manner. Elevated HIF-1 activity after acute nickel exposure might be selectively advantageous because nickel-transformed rodent and human cells possess increased HIF-1 transcriptional activity. Hypoxia plays an important role in tumor progression. It selects for cells with enhanced glycolytic activity, causing production of large amounts of lactic acid, one of the most common features of tumor cells (Warburg effect). Here, we hypothesize that exposure to nickel activates the hypoxia-inducible pathway and facilitates selection of cells with increased transcriptional activity of hypoxia-inducible genes, which may be important in the nickel-induced carcinogenic process. Key words: gene chip, HIF knockout, hypoxia, transcription factors. Environ Health Perspect 110(suppl 5):831-834 (2002). http://ehpnet1.niehs.nih.gov/docs/2002/suppl-5/831-834salnikow/abstract.html
Toxicol Appl Pharmacol, 2004
Using the mouse Affymetrix gene chip, we found that 1,4-α-glucan branching enzyme 1 (GBE1) was on... more Using the mouse Affymetrix gene chip, we found that 1,4-α-glucan branching enzyme 1 (GBE1) was one of the most up-regulated genes following nickel exposure. This result was confirmed by Northern blot in two mouse cell lines, four mouse tissues, and three human cell lines. We further found that this gene was also up-regulated by cobalt, hypoxia, the iron chelator (deferoxamine, or DFO), and the prolyl hydroxylase (PH) inhibitor (dimethyloxalyglycine, DMOG), suggesting that hypoxia inducible factor-1α (HIF-1α) was involved in the up-regulation of this gene. Experiments using HIF-1α +/+ and HIF-1α −/− mouse cells demonstrated this gene was up-regulated through a HIF-1α-dependent hypoxic signaling pathway. Because the hypoxic signaling pathway is believed to be important in the initiation and progression of carcinogenesis, it is important to study genes regulated by this pathway.
Cancer Research, Jul 1, 2003
Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are ... more Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are carcinogenic, exposure to nickel represents a serious hazard to human health. The understanding of how nickel exerts its toxic and carcinogenic effects at a molecular level may be important in risk assessment, as well as in the treatment and prevention of occupational diseases. Previously, using human and rodent cells in vitro, we showed that hypoxia-inducible signaling pathway was activated by carcinogenic nickel compounds. Acute exposure to nickel resulted in the accumulation of hypoxia-inducible transcription factor (HIF)-1, which strongly activated hypoxia-inducible genes, including the recently discovered tumor marker NDRG1 (Cap43). To further identify HIF-1-dependent nickel-inducible genes and to understand the role of the HIF-dependent signaling pathway in nickel-induced transformation, we used the Affymetrix GeneChip to compare the gene expression profiles in wild-type cells or in cells from HIF-1␣ knockout mouse embryos exposed to nickel chloride. As expected, when we examined 12,000 genes for expression changes, we found that genes coding for glycolytic enzymes and glucose transporters, known to be regulated by HIF-1 transcription factor, were induced by nickel only in HIF-1␣-proficient cells. In addition, we found a number of other hypoxiainducible genes up-regulated by nickel in a HIF-dependent manner including BCL-2-binding protein Nip3, EGLN1, hypoxia-inducible gene 1 (HIG1), and prolyl 4-hydroxylase. Additionally, we found a number of genes induced by nickel in a HIF-independent manner, suggesting that Ni activated other signaling pathways besides HIF-1. Finally, we found that in HIF-1␣ knockout cells, nickel strongly induced the expression of the whole group of genes that were not expressed in the presence of HIF-1. Because the majority of modulated genes were induced or suppressed by nickel in a HIF-1-dependent manner, we elucidated the role of HIF-1 transcription factor in cell transformation. In HIF-1␣-proficient cells, nickel exposure increased soft agar growth, whereas it decreased soft agar growth in HIF-1␣-deficient cells. We hypothesize that the induction of HIF-1 transcription factor by nickel may be important during the nickelinduced carcinogenic process.
Cancer research, 2003
Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are ... more Nickel is a potent environmental pollutant in industrial countries. Because nickel compounds are carcinogenic, exposure to nickel represents a serious hazard to human health. The understanding of how nickel exerts its toxic and carcinogenic effects at a molecular level may be important in risk assessment, as well as in the treatment and prevention of occupational diseases. Previously, using human and rodent cells in vitro, we showed that hypoxia-inducible signaling pathway was activated by carcinogenic nickel compounds. Acute exposure to nickel resulted in the accumulation of hypoxia-inducible transcription factor (HIF)-1, which strongly activated hypoxia-inducible genes, including the recently discovered tumor marker NDRG1 (Cap43). To further identify HIF-1-dependent nickel-inducible genes and to understand the role of the HIF-dependent signaling pathway in nickel-induced transformation, we used the Affymetrix GeneChip to compare the gene expression profiles in wild-type cells or i...
Handbook on the Toxicology of Metals, 2015
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005
Both water soluble and insoluble nickel compounds have been implicated in the etiology of human l... more Both water soluble and insoluble nickel compounds have been implicated in the etiology of human lung and nasal cancers. Water insoluble nickel compounds have been shown to enter cells by phagocytosis and are contained in cytoplasmic vacuoles, which are acidified thus accelerating the dissolution of soluble nickel from the particles. Using Newport Green, a dye that fluoresces when ionic nickel is bound, we have shown that following exposure (48-72 h) of human lung (A549) cells to NiS particles, most of the nickel is contained in the nucleus, while cells exposed to soluble NiCl2 exhibit most of the ions localized in the cytoplasm. This effect is consistent with previously published reports showing that short-term exposure of cells to crystalline nickel particles (1-3 days) is able to epigenetically silence target genes placed near heterochromatin, while similar short-term exposure to soluble nickel compounds are not able to induce silencing of genes placed near heterochromatin. However, a 3 week exposure of cells to soluble NiCl2 is also able to induce gene silencing. A similar effect was found in yeast cells where nickel was able to silence the URA-3 gene placed near (1.3 kb) a telomere silencing element, but not when the gene was placed farther away from the silencing element (2.0 kb). In addition to epigenetic effects, nickel compounds activate hypoxia signaling pathways. The mechanism of this effect involves the ability of either soluble or insoluble nickel compounds to block iron uptake leading to cellular iron depletion, directly affect iron containing enzymes, or both. This results in the inhibition of a variety of iron-dependent enzymes, such as aconitase and the HIF proline hydroxylases (PHD1-3). The inhibition of the HIF proline hydroxylases stabilizes the HIF protein and activates hypoxic signaling. Additional studies have shown that nickel and hypoxia decrease histone acetylation and increase the methylation of H3 lysine 9. These events are involved in gene silencing and hypoxia can also cause these effects in human cells. It is hypothesised that the state of hypoxia either by low oxygen tension or as a result of agents that signal hypoxia under normal oxygen tension (iron chelation, nickel and cobalt) results in low levels of acetyl CoA, which is a substrate for histone and other protein acetylation. This effect may in part be responsible for the gene silencing following nickel exposure and during hypoxia.
Toxicology and Applied Pharmacology, 2004
Hexavalent chromium (Cr (VI)) is a well known-human carcinogen with exposures occurring in both o... more Hexavalent chromium (Cr (VI)) is a well known-human carcinogen with exposures occurring in both occupational and environmental settings. Although lung carcinogenicity has been well documented for occupational exposure via inhalation, the carcinogenic hazard of drinking water exposure to Cr (VI) has yet to be established. We used a hairless mouse model to study the effects of K(2)CrO(4) in the drinking water on ultraviolet radiation (UVR)-induced skin tumors. Hairless mice were unexposed or exposed to UVR alone (1.2 kJ/m(2)), K(2)CrO(4) alone at 2.5 and 5.0 ppm, or the combination of UVR and K(2)CrO(4) at 0.5, 2.5, and 5.0 ppm. Mice were observed on a weekly basis for the appearance of skin tumors larger than 2 mm. All the mice were euthanized on day 182. The skin tumors were excised and subsequently analyzed microscopically for malignancy by histopathology. There was a total absence of observable skin tumors in untreated mice and in mice exposed to chromate alone. However, there was a dose-dependent increase in the number of skin tumors greater than 2 mm in mice exposed to K(2)CrO(4) and UV compared with mice exposed to UV alone. The increase in tumors larger than 2 mm was statistically significant (P < 0.05) for UV and K(2)CrO(4) at the two highest K(2)CrO(4) doses (2.5 and 5.0 ppm), and there was a statistically significant increase in the numbers of malignant tumors per mouse in the UVR plus K(2)CrO(4) (5 ppm) group compared with UV alone. The data presented here indicate that K(2)CrO(4) increases the number of UV-induced skin tumors in a dose-dependent manner, and these results support the concern that regulatory agencies have relative to the carcinogenic health hazards of widespread human exposure to Cr (VI) in drinking water.
Toxicology and Applied Pharmacology, 2005
Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic respon... more Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1alpha). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic selection pressure to convert a normal initiated cell into a cancer cell.
Toxicology and Applied Pharmacology, 2007
The carcinogenic activity of various nickel (Ni) compounds is likely dependent upon their ability... more The carcinogenic activity of various nickel (Ni) compounds is likely dependent upon their ability to enter cells and elevate intracellular levels of Ni ions. Water-insoluble Ni compounds such as NiS and Ni(3)S(2) were shown in vitro to enter cells by phagocytosis and potently induce tumors in experimental animals at the site of exposure. These water-insoluble nickel compounds are generally considered to be more potent carcinogens than the water-soluble forms. However, recent in vitro studies have shown similar effects for insoluble and soluble Ni compounds. Using a dye that fluoresces when intracellular Ni ion binds to it, we showed that both soluble and insoluble Ni compounds were able to elevate the levels of Ni ions in the cytoplasmic and nuclear compartments. However, when the source of Ni ions was removed from the culture dish, the intracellular Ni ions derived from soluble Ni compound were lost from the cells at a significantly faster rate than those derived from the insoluble Ni compound. Within 10 h after NiCl(2) removal from the culture medium, Ni ions disappeared from the nucleus and were not detected in the cells by 16 h, while insoluble Ni(3)S(2) yielded Ni ions that persisted in the nucleus after 16 h and were detected in the cytoplasm even after 24 h following Ni removal. These effects are discussed in terms of whole body exposure to water-soluble and -insoluble Ni compounds and consistency with animal carcinogenicity studies.
Molecular Carcinogenesis, 2006
Soluble nickel compounds are carcinogenic to humans although the mechanism by which they cause ca... more Soluble nickel compounds are carcinogenic to humans although the mechanism by which they cause cancer remains unclear. One major consequence of exposure to nickel is the stabilization of hypoxia inducible factor-1alpha (HIF-1alpha), a protein known to be overexpressed in a variety of cancers. In this study, we report a persistent stabilization of HIF-1alpha by nickel chloride up to 72 h after the removal of nickel from the culture media. In addition, we show that the HIF-prolyl hydroxylases (PHD's) are inhibited when cells are exposed to nickel and that they remain repressed for up to 72 h after nickel is removed. We then show that nickel can inhibit purified HIF-PHD's 2 in vitro, through direct interference with the enzyme. Through theoretical calculations, we also demonstrate that nickel may be able to replace the iron in the active site of this enzyme, providing a plausible mechanism for the persistent inhibition of HIF-PHD's by nickel. The data presented suggest that nickel can interfere with HIF-PHD directly and does not inhibit the enzyme by simply depleting cellular factors, such as iron or ascorbic acid. Understanding the mechanisms by which nickel can inhibit HIF-PHD's and stabilize HIF-1alpha may be important in the treatment of cancer and ischemic diseases.
Molecular and Cellular Biochemistry, 2005
Soluble nickel compounds are likely human carcinogens. The mechanism by which soluble nickel may ... more Soluble nickel compounds are likely human carcinogens. The mechanism by which soluble nickel may contribute to carcinogenesis is unclear, though several hypotheses have been proposed. Here we verify the ability of nickel to enter the cell via the divalent metal ion transporter 1 (DMT1) and disturb cellular iron homeostasis. Nickel may interfere with iron at both an extracellular level, by preventing iron from being transported into the cell, and at an intracellular level, by competing for iron sites on enzymes like the prolyl hydroxylases that modify hypoxia inducible factor-1alpha (HIF-1alpha). Nickel was able to decrease the binding of the Von Hippel-Lindau (VHL) protein to HIF-1alpha, indicating a decrease in prolyl hydroxylase activity. The ability of nickel to affect various iron dependent processes may be an important step in nickel dependent carcinogenesis. In addition, understanding the mechanisms by which nickel activates the HIF-1alpha pathway may lead to new molecular targets in fighting cancer.
Journal of Environmental Monitoring, 2003
The carcinogenicity of nickel compounds has been shown in numerous epidemiological and animal stu... more The carcinogenicity of nickel compounds has been shown in numerous epidemiological and animal studies. Carcinogenesis is generally considered as a multistep accumulation of genetic alterations. Nickel, however, being highly carcinogenic is only a weak mutagen. We hypothesize that nickel may act by modulating signaling pathways, and subsequently by reprogramming transcription factors. Insoluble nickel is considered to be more carcinogenic than soluble. In this study using GeneChip technology we compared changes in gene expression caused by soluble and insoluble nickel compounds. We found that both soluble and insoluble nickel compounds induce similar signaling pathways following 20 h of in vitro exposure. For example, both nickel compounds activated a number of transcription factors including hypoxia-inducible factor I (HIF-1) and p53. The induction of these important transcription factors exerts potent selective pressure leading to cell transformation. The obtained data are in agreement with our previous observations that acute nickel exposure activates HIF-1 and p53 transcription factors and in nickel-transformed cells, the ratio of HIF-I activity to p53 activity was shifted towards high HIF-I activity. The activation of the same signaling pathways by soluble and insoluble nickel compounds suggested that both nickel compounds have similar carcinogenic potential in vitro.
Environmental Health Perspectives, 2002
Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as ... more Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as one of the pathways affected by carcinogenic nickel compounds. Acute exposure to nickel activates hypoxia-inducible transcription factor-1 (HIF-1), which strongly induces hypoxia-inducible genes, including the recently discovered tumor marker Cap43. This gene has been cloned based on its nickel inducibility and was found to be highly inducible by hypoxia. To identify other HIF-1-dependent/independent nickel-inducible genes, we used cells obtained from HIF-1α null mouse embryos and analyzed gene expression changes using the microarray technique. We found that genes coding for glycolytic enzymes, known to be regulated by HIF-1, were also induced in nickel-exposed cells. In addition, we identified a number of new genes highly induced by nickel in an HIF-dependent manner. Elevated HIF-1 activity after acute nickel exposure might be selectively advantageous because nickel-transformed rodent and human cells possess increased HIF-1 transcriptional activity. Hypoxia plays an important role in tumor progression. It selects for cells with enhanced glycolytic activity, causing production of large amounts of lactic acid, one of the most common features of tumor cells (Warburg effect). Here, we hypothesize that exposure to nickel activates the hypoxia-inducible pathway and facilitates selection of cells with increased transcriptional activity of hypoxia-inducible genes, which may be important in the nickel-induced carcinogenic process. Key words: gene chip, HIF knockout, hypoxia, transcription factors. Environ Health Perspect 110(suppl 5):831-834 (2002). http://ehpnet1.niehs.nih.gov/docs/2002/suppl-5/831-834salnikow/abstract.html
Biological Research, 2006
DMT1 -Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 -transports Fe 2+ into the duoden... more DMT1 -Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 -transports Fe 2+ into the duodenum and out of the endosome during the transferrin cycle. DMT1 also is important in non-transferrin bound iron uptake. It plays similar roles in Mn 2+ trafficking. Voltage clamping showed that six other metals evoked currents, but it is unclear if these metals are substrates for DMT1. This report summarizes progress on which metals DMT1 transports, focusing on results from the authors' labs. We recently cloned 1A/+IRE and 2/-IRE DMT1 isoforms to generate HEK293 cell lines that express them in a tetracycline-inducible fashion, then compared induced expression to uninduced expression and to endogenous DMT1 expression. Induced expression increases ~50x over endogenous expression and ~10x over uninduced levels. Fe 2+ , Mn 2+ , Ni 2+ and Cu 1+ or Cu 2+ are transported. We also explored competition between metal ions using this system because incorporation essentially represents DMT1 transport and find this order for transport affinity: Mn>?Cd>?Fe>Pb~Co~Ni>Zn. The effects of decreased DMT1 also could be examined. The Belgrade rat has diminished DMT1 function and thus provides ways of testing. A series of DNA constructs that generate siRNAs specific for DMT1 or certain DMT1 isoforms yield another way to test DMT1-based transport.
General and Applied Toxicology, 2009