ToddWilliam Gouin - Academia.edu (original) (raw)
Uploads
Papers by ToddWilliam Gouin
Environmental Science: Processes & Impacts, 2014
Concentrations of neutral per- and polyfluoroalkyl substances (nPFAS) in the atmosphere are of in... more Concentrations of neutral per- and polyfluoroalkyl substances (nPFAS) in the atmosphere are of interest because nPFAS are highly mobile percursors for perfluoroalkyl acids. Two calibration studies in Ontario, Canada and Costa Rica established the feasibility of using XAD 2-resin based passive air samplers (XAD-PAS) to reliably determine long term average air concentrations of nPFAS under temperate and tropical climatic conditions. The temporal and spatial distribution of nPFAS was investigated by analyzing XAD-PAS deployed for one year at between 17 and 46 sites on six continents between 2006 and 2011 as part of the Global Atmospheric Passive Sampling (GAPS) study. Higher levels of fluorotelomer alcohols (FTOHs) compared to fluorinated sulfonamides (FOSAs), and fluorinated sulfonamidoethanols (FOSEs) were observed at all sites. Urban sites had the highest levels of nPFAS compared to rural and remote sites, which is also apparent in a positive correlation of nPFAS levels with the proximity of a sampling site to areas of high population density. Levels of FOSAs and FOSEs tended to decrease during the six years of measurements, whereas an initial decline in the concentrations of FTOHs from 2006 to 2008 did not continue in 2009 to 2011. A comparison of nPFAS levels measured in national XAD-PAS networks in Costa Rica and Botswana revealed that the GAPS sites in Tapanti and the Kalahari are representative of the more remote regions in those countries. XAD-PAS derived absolute nPFAS levels at GAPS sites are lower than those measured using another PAS, but are within the range of levels measured with active air samplers. Agreement of relative nPFAS composition is better between samplers, suggesting that the discrepancy is due to uncertain sampling rates.
Stochastic Environmental Research and Risk Assessment (SERRA), 2003
Integrated Environmental Assessment and Management, 2014
Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (C... more Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree . Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments.
Environmental Science & Technology, 2007
Environmental Science & Technology, 2006
Passive air samplers made from polyurethane foam (PUF) disks housed in stainless steel chambers w... more Passive air samplers made from polyurethane foam (PUF) disks housed in stainless steel chambers were deployed over four seasons during 2002-2003, at 15 sites in the Laurentian Great lakes, to assess spatial and temporal trends of polychlorinated naphthalenes (PCNs). Sampling rates, determined using depuration compounds pre-spiked into the PUF disk prior to exposure, were, on average, 2.9 ( 1.1 m 3 d -1 , consistent with previous studies employing these samplers. PCN air concentrations exhibited strong urbanrural differencesstypically a few pg m -3 at rural sites and an order of magnitude higher at urban sites (Toronto, 12-31 pg m -3 and Chicago,13-52 pg m -3 ). The high concentrations at urban sites were attributed to continued emissions of historically used technical PCN. Contributions from combustion-derived PCNs seemed to be more important at rural locations where congeners 24 and 50, associated with wood and coal burning, were elevated. Congener 66/67, associated with incineration and other industrial thermal processes, was elevated at two sites and explained by nearby and/or upwind sources. Probability density maps were constructed for each site and for every integration period were shown to be a useful complement to seasonally integrated passive sampling data to resolve source-receptor relationship for PCNs and other pollutants.
Environmental Science & Technology, 2007
Passive air samples (PAS) were collected and analyzed to assess the spatial and temporal trends o... more Passive air samples (PAS) were collected and analyzed to assess the spatial and temporal trends of chiral organochlorine signatures in the Laurentian Great Lakes. Samples were collected from 15 sites and analyzed for the concentrations and enantiomer signature of chlordanes and R-hexachlorocyclohexane (R-HCH). Levels of the chlordanes were typically 4 times higher in urban areas than what were observed at rural and remote locations, exhibiting strong urban-rural gradients. Near racemic residues were seen for the chlordane enantiomers in samples collected from sites located in Toronto and Chicago, which can be attributed to continued emissions of historical use of the technical chlordane mixture, while the chiral signature observed at sites located in rural and remote locations was indicative of an aged source. Knowledge of the spatial and temporal distribution of the enantiomer signatures of chlordane and R-HCH in air is useful for distinguishing sources of these compounds to ambient air. Results suggest that potential sources, such as those associated with Toronto and Chicago, have limited influence over the levels at rural and remote sites within the Great Lakes. Sources that are relatively close to sample sites, however, have a strong influence on levels observed at those sites. For instance, results indicate that Lake Superior continues to act as a source of R-HCH to sites located on its shores. Generally, it appears that during the warmer months, local enhanced surface-air exchange influences air concentrations and that during the cooler periods of the year, levels in the atmosphere are more strongly influenced by advective transport from source regions.
Environmental Science & Technology, 2005
Environmental Pollution, 2004
global scale fractionation and hopping of POPs is reviewed.
Environment International, 2003
In response to growing alarm over the occurrence of polybrominated diphenyl ethers (PBDEs) in rem... more In response to growing alarm over the occurrence of polybrominated diphenyl ethers (PBDEs) in remote regions, this study considers their physical chemistry, environmental partitioning and considerations regarding potential for long-range atmospheric transport (LRAT). Internally consistent physical -chemical property data are presented for five representative congeners ) and used in a multimedia modelling approach. Results of the Level II model indicate that PBDEs will largely partition to organic carbon in soil and sediment and that their persistence will be strongly influenced by degradation rates in these media that are not well known. TaPL3 model estimates of their characteristic travel distance (CTD) suggest limited LRAT potential. The LRAT is also evaluated qualitatively, in terms of surface -air exchange behaviour. PBDEs are shown to be sensitive to seasonally and diurnally fluctuating temperatures. When vegetation is included in the model, 50% of the total mass of PBDE-47 deposited to vegetation returns to the atmosphere, suggesting that it may migrate through a series of deposition/volatilisation hops. Key data that needs to be identified in this evaluation include a better understanding of airsurface exchange, particularly to foliage, and measurements of degradation rates in soil, sediment and vegetation. Crown
Chemosphere, 2006
Atmospheric concentrations are reported for the main component of the brominated flame retardant ... more Atmospheric concentrations are reported for the main component of the brominated flame retardant decaBDE in air samples collected from Southern Ontario for the period January 23-June 06, 2002. Levels ranged from below detection to 105 pg m À3 with virtually all of BDE-209 being trapped by the filter and thus deduced to be sorbed to aerosol particles. Thus, it is likely that the longrange atmospheric transport (LRAT) of BDE-209 is controlled by the transport characteristics of the aerosols. This conclusion that BDE-209 does not have the same potential for LRAT as other more volatile PBDEs is subject to possible complications arising from the uncertainties about the LRAT potential of aerosols.
In this study passive air samplers (PAS) were deployed on a monthly basis at a number of sites al... more In this study passive air samplers (PAS) were deployed on a monthly basis at a number of sites along a south-north transect, extending 700 km north from Toronto, Ontario, characterizing an urban-agricultural-forested gradient, to investigate the spatial and temporal trends of current-use pesticides (CUPs), between spring 2003 and spring 2004. The most frequently detected CUPs were chlorpyrifos, dacthal, trifluralin, and a-endosulfan. Highest air concentrations of chlorpyrifos were observed in May, whereas a-endosulfan and dacthal peaked in July and August, reflecting differences in usage patterns. At the agricultural site, representing the source region of CUPs, chlorpyrifos air concentrations (pg m À3 ) varied from 2700 to 3.2 and a-endulsulfan from 1600 to 19. The most frequently detected legacy pesticides were the hexachlorocylcohexanes (a-HCH and g-HCH). For the forested sites, located on the Precambrian Shield, a region with limited agricultural activity, seasonal differences were less pronounced and air concentrations were observed to be much lower. For instance, air concentrations (pg m À3 ) of chlorpyrifos and a-endosulfan ranged from 7.6 to 0.3 and 50 to 2.0, respectively. By combining PAS data with trajectory air shed maps it is demonstrated that potential source-receptor relationships can be assessed. Air shed maps produced in this study indicate a potential of increased deposition of CUPs to Lake Erie and Lake Ontario.
Monitoring data indicate that organic compounds with high octanol-air partition coefficients (K O... more Monitoring data indicate that organic compounds with high octanol-air partition coefficients (K OA ), such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) exhibit seasonally variable air concentrations, especially during early spring, shortly after snow melt and before bud-burst when levels are elevated. This variability can complicate the interpretation of monitoring data designed to assess year-to-year changes. It is suggested that relatively simple dynamic multimedia mass balance models can assist interpretation by ''factoring out'' variability attributable to temperature and other seasonal effects as well as identifying likely contaminant sources. To illustrate this approach, high-volume air samples were collected from January to June, 2002 at a rural location in southern Ontario. Gas-phase concentrations for both SPBDE and SPCB rose from below the detection limit during the winter to 19 and 110 pg m À3 , respectively, in early spring, only to decrease again following bud-burst. Passive air samples (PAS), deployed at seven urban, rural and remote sites for two one-month periods prior and following budburst, indicate a strong urban-rural gradient for both the PBDEs and PCBs. Calculated air concentrations from the PAS are shown to agree favorably with the high-volume air sampling data, with concentrations ranging 6-85 pg m À3 and 6-360 pg m À3 for SPBDE and SPCB, respectively. Concentrations in urban areas are typically 5 times greater than in rural locations. These data were interpreted using simulation results from a fate model including a seasonally variable forest canopy and snow pack, suggesting that the primary source is urban and that the ''spring pulse'' is the result of several interacting factors. Such contaminants are believed to be efficiently deposited in winter, accumulate in the snow pack and are released to terrestrial surfaces upon snow melt in spring. Warmer temperatures cause volatilization and a rise in air concentrations until uptake in emerging foliage leads to a decline in late spring. Implications for monitoring are discussed. r
Environmental Science: Processes & Impacts, 2014
Concentrations of neutral per- and polyfluoroalkyl substances (nPFAS) in the atmosphere are of in... more Concentrations of neutral per- and polyfluoroalkyl substances (nPFAS) in the atmosphere are of interest because nPFAS are highly mobile percursors for perfluoroalkyl acids. Two calibration studies in Ontario, Canada and Costa Rica established the feasibility of using XAD 2-resin based passive air samplers (XAD-PAS) to reliably determine long term average air concentrations of nPFAS under temperate and tropical climatic conditions. The temporal and spatial distribution of nPFAS was investigated by analyzing XAD-PAS deployed for one year at between 17 and 46 sites on six continents between 2006 and 2011 as part of the Global Atmospheric Passive Sampling (GAPS) study. Higher levels of fluorotelomer alcohols (FTOHs) compared to fluorinated sulfonamides (FOSAs), and fluorinated sulfonamidoethanols (FOSEs) were observed at all sites. Urban sites had the highest levels of nPFAS compared to rural and remote sites, which is also apparent in a positive correlation of nPFAS levels with the proximity of a sampling site to areas of high population density. Levels of FOSAs and FOSEs tended to decrease during the six years of measurements, whereas an initial decline in the concentrations of FTOHs from 2006 to 2008 did not continue in 2009 to 2011. A comparison of nPFAS levels measured in national XAD-PAS networks in Costa Rica and Botswana revealed that the GAPS sites in Tapanti and the Kalahari are representative of the more remote regions in those countries. XAD-PAS derived absolute nPFAS levels at GAPS sites are lower than those measured using another PAS, but are within the range of levels measured with active air samplers. Agreement of relative nPFAS composition is better between samplers, suggesting that the discrepancy is due to uncertain sampling rates.
Stochastic Environmental Research and Risk Assessment (SERRA), 2003
Integrated Environmental Assessment and Management, 2014
Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (C... more Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree . Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments.
Environmental Science & Technology, 2007
Environmental Science & Technology, 2006
Passive air samplers made from polyurethane foam (PUF) disks housed in stainless steel chambers w... more Passive air samplers made from polyurethane foam (PUF) disks housed in stainless steel chambers were deployed over four seasons during 2002-2003, at 15 sites in the Laurentian Great lakes, to assess spatial and temporal trends of polychlorinated naphthalenes (PCNs). Sampling rates, determined using depuration compounds pre-spiked into the PUF disk prior to exposure, were, on average, 2.9 ( 1.1 m 3 d -1 , consistent with previous studies employing these samplers. PCN air concentrations exhibited strong urbanrural differencesstypically a few pg m -3 at rural sites and an order of magnitude higher at urban sites (Toronto, 12-31 pg m -3 and Chicago,13-52 pg m -3 ). The high concentrations at urban sites were attributed to continued emissions of historically used technical PCN. Contributions from combustion-derived PCNs seemed to be more important at rural locations where congeners 24 and 50, associated with wood and coal burning, were elevated. Congener 66/67, associated with incineration and other industrial thermal processes, was elevated at two sites and explained by nearby and/or upwind sources. Probability density maps were constructed for each site and for every integration period were shown to be a useful complement to seasonally integrated passive sampling data to resolve source-receptor relationship for PCNs and other pollutants.
Environmental Science & Technology, 2007
Passive air samples (PAS) were collected and analyzed to assess the spatial and temporal trends o... more Passive air samples (PAS) were collected and analyzed to assess the spatial and temporal trends of chiral organochlorine signatures in the Laurentian Great Lakes. Samples were collected from 15 sites and analyzed for the concentrations and enantiomer signature of chlordanes and R-hexachlorocyclohexane (R-HCH). Levels of the chlordanes were typically 4 times higher in urban areas than what were observed at rural and remote locations, exhibiting strong urban-rural gradients. Near racemic residues were seen for the chlordane enantiomers in samples collected from sites located in Toronto and Chicago, which can be attributed to continued emissions of historical use of the technical chlordane mixture, while the chiral signature observed at sites located in rural and remote locations was indicative of an aged source. Knowledge of the spatial and temporal distribution of the enantiomer signatures of chlordane and R-HCH in air is useful for distinguishing sources of these compounds to ambient air. Results suggest that potential sources, such as those associated with Toronto and Chicago, have limited influence over the levels at rural and remote sites within the Great Lakes. Sources that are relatively close to sample sites, however, have a strong influence on levels observed at those sites. For instance, results indicate that Lake Superior continues to act as a source of R-HCH to sites located on its shores. Generally, it appears that during the warmer months, local enhanced surface-air exchange influences air concentrations and that during the cooler periods of the year, levels in the atmosphere are more strongly influenced by advective transport from source regions.
Environmental Science & Technology, 2005
Environmental Pollution, 2004
global scale fractionation and hopping of POPs is reviewed.
Environment International, 2003
In response to growing alarm over the occurrence of polybrominated diphenyl ethers (PBDEs) in rem... more In response to growing alarm over the occurrence of polybrominated diphenyl ethers (PBDEs) in remote regions, this study considers their physical chemistry, environmental partitioning and considerations regarding potential for long-range atmospheric transport (LRAT). Internally consistent physical -chemical property data are presented for five representative congeners ) and used in a multimedia modelling approach. Results of the Level II model indicate that PBDEs will largely partition to organic carbon in soil and sediment and that their persistence will be strongly influenced by degradation rates in these media that are not well known. TaPL3 model estimates of their characteristic travel distance (CTD) suggest limited LRAT potential. The LRAT is also evaluated qualitatively, in terms of surface -air exchange behaviour. PBDEs are shown to be sensitive to seasonally and diurnally fluctuating temperatures. When vegetation is included in the model, 50% of the total mass of PBDE-47 deposited to vegetation returns to the atmosphere, suggesting that it may migrate through a series of deposition/volatilisation hops. Key data that needs to be identified in this evaluation include a better understanding of airsurface exchange, particularly to foliage, and measurements of degradation rates in soil, sediment and vegetation. Crown
Chemosphere, 2006
Atmospheric concentrations are reported for the main component of the brominated flame retardant ... more Atmospheric concentrations are reported for the main component of the brominated flame retardant decaBDE in air samples collected from Southern Ontario for the period January 23-June 06, 2002. Levels ranged from below detection to 105 pg m À3 with virtually all of BDE-209 being trapped by the filter and thus deduced to be sorbed to aerosol particles. Thus, it is likely that the longrange atmospheric transport (LRAT) of BDE-209 is controlled by the transport characteristics of the aerosols. This conclusion that BDE-209 does not have the same potential for LRAT as other more volatile PBDEs is subject to possible complications arising from the uncertainties about the LRAT potential of aerosols.
In this study passive air samplers (PAS) were deployed on a monthly basis at a number of sites al... more In this study passive air samplers (PAS) were deployed on a monthly basis at a number of sites along a south-north transect, extending 700 km north from Toronto, Ontario, characterizing an urban-agricultural-forested gradient, to investigate the spatial and temporal trends of current-use pesticides (CUPs), between spring 2003 and spring 2004. The most frequently detected CUPs were chlorpyrifos, dacthal, trifluralin, and a-endosulfan. Highest air concentrations of chlorpyrifos were observed in May, whereas a-endosulfan and dacthal peaked in July and August, reflecting differences in usage patterns. At the agricultural site, representing the source region of CUPs, chlorpyrifos air concentrations (pg m À3 ) varied from 2700 to 3.2 and a-endulsulfan from 1600 to 19. The most frequently detected legacy pesticides were the hexachlorocylcohexanes (a-HCH and g-HCH). For the forested sites, located on the Precambrian Shield, a region with limited agricultural activity, seasonal differences were less pronounced and air concentrations were observed to be much lower. For instance, air concentrations (pg m À3 ) of chlorpyrifos and a-endosulfan ranged from 7.6 to 0.3 and 50 to 2.0, respectively. By combining PAS data with trajectory air shed maps it is demonstrated that potential source-receptor relationships can be assessed. Air shed maps produced in this study indicate a potential of increased deposition of CUPs to Lake Erie and Lake Ontario.
Monitoring data indicate that organic compounds with high octanol-air partition coefficients (K O... more Monitoring data indicate that organic compounds with high octanol-air partition coefficients (K OA ), such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) exhibit seasonally variable air concentrations, especially during early spring, shortly after snow melt and before bud-burst when levels are elevated. This variability can complicate the interpretation of monitoring data designed to assess year-to-year changes. It is suggested that relatively simple dynamic multimedia mass balance models can assist interpretation by ''factoring out'' variability attributable to temperature and other seasonal effects as well as identifying likely contaminant sources. To illustrate this approach, high-volume air samples were collected from January to June, 2002 at a rural location in southern Ontario. Gas-phase concentrations for both SPBDE and SPCB rose from below the detection limit during the winter to 19 and 110 pg m À3 , respectively, in early spring, only to decrease again following bud-burst. Passive air samples (PAS), deployed at seven urban, rural and remote sites for two one-month periods prior and following budburst, indicate a strong urban-rural gradient for both the PBDEs and PCBs. Calculated air concentrations from the PAS are shown to agree favorably with the high-volume air sampling data, with concentrations ranging 6-85 pg m À3 and 6-360 pg m À3 for SPBDE and SPCB, respectively. Concentrations in urban areas are typically 5 times greater than in rural locations. These data were interpreted using simulation results from a fate model including a seasonally variable forest canopy and snow pack, suggesting that the primary source is urban and that the ''spring pulse'' is the result of several interacting factors. Such contaminants are believed to be efficiently deposited in winter, accumulate in the snow pack and are released to terrestrial surfaces upon snow melt in spring. Warmer temperatures cause volatilization and a rise in air concentrations until uptake in emerging foliage leads to a decline in late spring. Implications for monitoring are discussed. r