Tuyen Nguyen Viet - Academia.edu (original) (raw)
Uploads
Papers by Tuyen Nguyen Viet
VNU Journal of Science: Mathematics - Physics, 2018
Cu2ZnSnS4 (CZTS) is a p-type semiconductor with high absorption coefficient and direct bandgap fr... more Cu2ZnSnS4 (CZTS) is a p-type semiconductor with high absorption coefficient and direct bandgap from 1 to 1.5 eV, which is ideal for making absorber layer for solar cell. However, it is difficult to get single phase of CZTS due to the competitive formation of binary and ternary secondary phases. In this paper, we prepared CZTS nanoparticles by hydrothermal method and investigate the influence of hydrothermal temperature on the product. Raman scattering, X-ray diffraction, scanning electron microcopy, energy dispersive X-ray spectroscopy and diffusion reflective measurement were applied to characterize the products. The products are high quality nanocrystals of kesterite phase with uniform size which is applicable for solar absorber layer fabrication.
VNU Journal of Science: Mathematics - Physics, 2020
Thanks to unique Raman spectra of chemical substances, a growing number of applications in enviro... more Thanks to unique Raman spectra of chemical substances, a growing number of applications in environmental and biomedical fields based on Raman scattering has been developed. However, the low probability of Raman scattering hindered its potential development and thus, many different techniques were developed to enhance Raman signal. A key step of surface-enhanced Raman scattering technique is to prepare active SERS substrate from noble metals. The main enhancement mechanism is electromagnetic enhancement resulted from surface plasmon resonance. The disadvantages of nanoparticles based SERS substrates include high randomness due to self - assembly process of nanoparticles. Recently, a new kind of SERS substrates with order nanostructures of semiconductors combining with noble metals can serve as active SERS substrates, which are expected to possess high enhancement of Raman signals. In this study, ordered ZnO nanorods were first prepared by galvanic hydrothermal method and gold was spu...
VNU Journal of Science: Mathematics - Physics
CuO nanorods were prepared by thermal oxidation method in ozone ambient. The effect of annealing ... more CuO nanorods were prepared by thermal oxidation method in ozone ambient. The effect of annealing temprature in the range from 400 to 600 oC on morphology and structure of nanorods was studied thouroughly by scanning electron microscopy (SEM) and X-ray diffraction, combining with energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results showed that annealing temprature strongly affected the structure and morphology of the produced CuO nanorods. The most uniform nanorods with highest crystal quality were obtained when annealing temperature is from 450 to 500 °C and annealing time was 2 h as suggested by SEM images together with Raman results.
VNU Journal of Science: Mathematics - Physics, 2018
Cu2ZnSnS4 (CZTS) is a p-type semiconductor with high absorption coefficient and direct bandgap fr... more Cu2ZnSnS4 (CZTS) is a p-type semiconductor with high absorption coefficient and direct bandgap from 1 to 1.5 eV, which is ideal for making absorber layer for solar cell. However, it is difficult to get single phase of CZTS due to the competitive formation of binary and ternary secondary phases. In this paper, we prepared CZTS nanoparticles by hydrothermal method and investigate the influence of hydrothermal temperature on the product. Raman scattering, X-ray diffraction, scanning electron microcopy, energy dispersive X-ray spectroscopy and diffusion reflective measurement were applied to characterize the products. The products are high quality nanocrystals of kesterite phase with uniform size which is applicable for solar absorber layer fabrication.
VNU Journal of Science: Mathematics - Physics, 2020
Thanks to unique Raman spectra of chemical substances, a growing number of applications in enviro... more Thanks to unique Raman spectra of chemical substances, a growing number of applications in environmental and biomedical fields based on Raman scattering has been developed. However, the low probability of Raman scattering hindered its potential development and thus, many different techniques were developed to enhance Raman signal. A key step of surface-enhanced Raman scattering technique is to prepare active SERS substrate from noble metals. The main enhancement mechanism is electromagnetic enhancement resulted from surface plasmon resonance. The disadvantages of nanoparticles based SERS substrates include high randomness due to self - assembly process of nanoparticles. Recently, a new kind of SERS substrates with order nanostructures of semiconductors combining with noble metals can serve as active SERS substrates, which are expected to possess high enhancement of Raman signals. In this study, ordered ZnO nanorods were first prepared by galvanic hydrothermal method and gold was spu...
VNU Journal of Science: Mathematics - Physics
CuO nanorods were prepared by thermal oxidation method in ozone ambient. The effect of annealing ... more CuO nanorods were prepared by thermal oxidation method in ozone ambient. The effect of annealing temprature in the range from 400 to 600 oC on morphology and structure of nanorods was studied thouroughly by scanning electron microscopy (SEM) and X-ray diffraction, combining with energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results showed that annealing temprature strongly affected the structure and morphology of the produced CuO nanorods. The most uniform nanorods with highest crystal quality were obtained when annealing temperature is from 450 to 500 °C and annealing time was 2 h as suggested by SEM images together with Raman results.