Uday Singh - Academia.edu (original) (raw)
Related Authors
Uploads
Papers by Uday Singh
This paper presents a review of the capacitive pressure sensor. Firstly, the different types of s... more This paper presents a review of the capacitive pressure sensor. Firstly, the different types of sensors available are compared. For applications requiring high sensitivity and very low effects due to temperature, the capacitive sensor is preferred. Various methods to change the capacitance are also compared, which leads to the conclusion that the method involving changing the distance between the plates has the highest sensitivity. The different diaphragms available are also compared in this paper. The result of the comparison shows that the square diaphragm is most suitable. Further study shows that the diaphragm with a bossed structure has the highest sensitivity and the lowest nonlinearity. After the structural analysis, the pull-in effect phenomenon present during anodic bonding is also studied. The analysis of the pull-in effect showed that the dimension of the sensor should be chosen such that the electrodes do not stick during the anodic bonding. Different capacitive sensing schemes are also shown in this paper. The parasitic capacitances and the noise are major factors limiting the performance of the sensor. So the sources and methods to mitigate such effects are also presented. The ASICs available for the conversion of the capacitance to voltage or digital output are compared based on different parameters.
This paper presents a review of the capacitive pressure sensor. Firstly, the different types of s... more This paper presents a review of the capacitive pressure sensor. Firstly, the different types of sensors available are compared. For applications requiring high sensitivity and very low effects due to temperature, the capacitive sensor is preferred. Various methods to change the capacitance are also compared, which leads to the conclusion that the method involving changing the distance between the plates has the highest sensitivity. The different diaphragms available are also compared in this paper. The result of the comparison shows that the square diaphragm is most suitable. Further study shows that the diaphragm with a bossed structure has the highest sensitivity and the lowest nonlinearity. After the structural analysis, the pull-in effect phenomenon present during anodic bonding is also studied. The analysis of the pull-in effect showed that the dimension of the sensor should be chosen such that the electrodes do not stick during the anodic bonding. Different capacitive sensing schemes are also shown in this paper. The parasitic capacitances and the noise are major factors limiting the performance of the sensor. So the sources and methods to mitigate such effects are also presented. The ASICs available for the conversion of the capacitance to voltage or digital output are compared based on different parameters.