Umesh Jadhav - Academia.edu (original) (raw)
Papers by Umesh Jadhav
Journal of The Science of Food and Agriculture, 2009
BACKGROUND: Aflatoxin contamination of various commodities can occur as a result of infection, ma... more BACKGROUND: Aflatoxin contamination of various commodities can occur as a result of infection, mainly by Aspergillus flavus and Aspergillus parasiticus. Every year, almost 25% of the world's food supply is contaminated by mycotoxins. Aflatoxins B1, B2, G1 and G2, which occur naturally, are significant contaminants of a wide variety of commodities. A number of biological activities have been associated with Ageratum conyzoides. We have therefore investigated the antiaflatoxigenic, antioxidant and antimicrobial activity of essential oils of A. conyzoides. This could help to turn A. conyzoides, a nuisance weed, into a resource.RESULTS: The essential oil of Ageratum conyzoides L. shows the presence of 12 compounds when analyzed by gas chromatography–mass spectrometry. The growth and aflatoxin production of the toxigenic strain Aspergillus parasiticus was completely inhibited by essential oil. All the studied concentrations of the oil demonstrate a reduction in mycelia growth and decreased production of different aflatoxins in fungi, as revealed by liquid chomatographic–tandem mass spectrometric analysis. Volatiles from macerated green leaf tissue of A. conyzoides were also effective against A. parasiticus. The strongest antibacterial activity was observed against the bacteria Staphylococcus aureus and Bacillus subtilis in a disk diffusion bioassay. Essential oil and methanol extract of A. conyzoides L. were assayed for their antioxidant activity. Methanol extract showed the highest antioxidant activity in FRAP and DPPH assay, whereas essential oil showed greater lipid peroxidation inhibition than methanol extract.CONCLUSION: The plant's ethno-medicinal importance, antioxidant potential, inhibitory activity against the Aspergillus group of fungi and production of aflatoxins may add a new dimension to its usefulness in the protection of stored product. Copyright © 2010 Society of Chemical Industry
Biodegradation, 2009
Bacillus sp. VUS decolorized azo dye Navy blue 2GL in 48 h at static anoxic condition in yeast ex... more Bacillus sp. VUS decolorized azo dye Navy blue 2GL in 48 h at static anoxic condition in yeast extract medium, whereas it took only 18 h for the decolorization in presence of CaCl2. Different inducers played role in the decolorization of Navy blue 2GL. CaCl2 found to be the most effective inducer among all inducers tested. The activity of enzymes like lignin peroxidase, laccase and reductases viz. NADH-DCIP, azo and riboflavin induced during decolorization represents their role in the biodegradation. Extracellular LiP and intracellular laccase activity induced with CaCl2. Yeast extract was best medium for faster decolorization than other media. UV–vis spectrophotometer analysis and visual examinations showed decolorization of dye. High performance liquid chromatography, Fourier transforms infrared spectroscopy showed degradation of dye. Gas Chromatography-Mass Spectroscopy revealed formation of 4-Amino-3-(2-bromo-4, 6-dinitro-phenylazo)-phenol and acetic acid 2-(-acetoxy-ethylamino)-ethyl ester as final products. Bacillus sp. VUS also decolorized synthetic effluent. Phytotoxicity study showed detoxification of Navy blue 2GL.
International Journal of Phytoremediation, 2011
Polyphenol oxidase (PPO) purified using DEAE-cellulose and Biogel P-100 column chromatography fro... more Polyphenol oxidase (PPO) purified using DEAE-cellulose and Biogel P-100 column chromatography from banana pulp showed 12.72-fold activity and 2.49% yield. The optimum temperature and pH were found to be 30°C and 7.0, respectively for its activity. Catechol was found to be a suitable substrate for banana pulp PPO that showed Vmax, 0.041 mM min−1 and Km, 1.6 mM. The enzyme activity was inhibited by sodium metabisulfite, citric acid, cysteine, and β-mercaptoethanol at 10 mM concentration. The purified enzyme could decolorize (90%) Direct Red 5B (160 μg mL−1) dye within 48 h and Direct Blue GLL (400 μg mL−1) dye up to 85% within 90 h. The GC-MS analysis indicated the presence of 4-hydroxy-benzenesulfonic acid and Naphthalene-1,2,3,6-tetraol in the degradation products of Direct Red 5B, and 5-(4-Diazenyl-naphthalene-1-ylazo)-8-hydroxy-naphthalene-2-sulfonic acid and 2-(4-Diazenyl-naphthalene-1-ylazo)-benzenesulfonic acid in the degradation products of Direct Blue GLL.
Journal of Hazardous Materials, 2008
Soil samples collected from the vicinity of "Manpasand textile industry", located near Ichalkaran... more Soil samples collected from the vicinity of "Manpasand textile industry", located near Ichalkaranji, India were studied for screening and isolation of bacterial strains capable of degradation of textile dyes. A potential strain was selected on the basis of rapid dye degradation and later identified as Comamonas sp. UVS. Comamonas sp. UVS showed 100% decolorization of Direct Red 5B (DR5B) dye at 40 • C and pH 6.5. The maximum Direct Red 5B concentration decolorized was 1100 mg/l in nutrient broth within 125 h. A numerical simulation with the Michaelis-Menten kinetics model gives an optimal value of 16.01 ± 0.36 mg dye/g cell/h for maximum rate (V max ) and 7.97 ± 0.21 mg/l for the Michaelis constant (K m ). The induction in the activities of laccase and LiP was observed during decolorization. These enzymes were inhibited by the addition of sodium azide. The biodegradation was monitored by UV-vis, FTIR spectroscopy and HPLC. The GCMS analysis indicated the presence of 7-benzoylamino-3diazenyl-4-hydroxy-naphthalene-2-sulfonic acid in degraded product of the dye. The germination of Triticum aestivum seeds was inhibited with DR5B treatment but not with the treatment of dye degradation products. .in (S.P. Govindwar). decomposition processes . Wide range of microorganisms is capable of decolorizing a variety of dyes include some bacteria, fungi, yeasts and algae . Various fungal cultures mainly belonging to white rot fungi have been described to oxidize synthetic dyes . However, the majority of white rot fungi described require nitrogen-limiting conditions and long time periods to decolorize dyes, which limits their applications to the laboratory level. In the present study, we have focused our attention on the isolation of dye decolorizing bacterial strains from dye-contaminated soil from an industrial site. We have reported the decolorization ability of the isolated bacteria for several industrial dyes using various conditions. The intermediates formed during the dye degradation have been analyzed.
Ecotoxicology and Environmental Safety, 2010
This work presents role of different enzymes in decolorization of industrial dye Orange T4LL by B... more This work presents role of different enzymes in decolorization of industrial dye Orange T4LL by Bacillus sp. VUS. Bacillus sp. strain VUS decolorized dye Orange T4LL, under static anoxic condition in 24 h. During decolorization of Orange T4LL a significant induction in the activities of lignin peroxidase, tyrosinase, and reductases (NADH-DCIP, azo, and riboflavin) was observed. The biodegradation was monitored by Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and high performance liquid chromatography. The final products 4-methyl-2-o-tolylazo-benzene-1,3-diamine and [3-(phenyl-hydrazono)-cyclohexa-1,4-dienyl]-methanol were characterized by gas chromatography-mass spectroscopy. Phytotoxicity, COD, and BOD revealed non-toxicity of degraded products. Phytotoxicity study demonstrated non-toxicity of the biodegraded products for crop plants with respect to Triticum aestivum and Sorghum bicolor. Bacillus sp. VUS with its enzyme system could be a useful tool for textile effluent treatment.
Journal of Chemical Technology and Biotechnology, 2009
BACKGROUND: The present work aims to study the production of lignin peroxidase (LiP) enzyme by Co... more BACKGROUND: The present work aims to study the production of lignin peroxidase (LiP) enzyme by Comamonas sp UVS using various media, and lignocellulosic waste materials, and its effect on decolorization of Direct Blue GLL (DBGLL).RESULTS: Yeast extract medium was found to be more effective for the production of LiP and also for the decolorization of DBGLL. The bagasse powder along with yeast extract induced LiP activity. Comamonas sp UVS decolorized DBGLL dye (50 mg L−1) within 13 h at static condition in YE broth. It could degrade up to 300 mg L−1 of dye within 55 h. The maximum rate (Vmax) of decolorization was 12.41 ± 0.55 mg dye g cell−1 h−1 with the Michaelis constant (Km) value as 6.20 ± 0.27 mg L−1. The biodegradation was monitored by UV-Vis, GC-MS and HPLC.CONCLUSION: The use of agricultural by-products for the activity enhancement of the ligninolytic enzymes is a cost effective process. It also resolves the problem of the disposal of agro-residues. This system can be applied for the degradation of different recalcitrant compounds. Copyright © 2008 Society of Chemical Industry
Biotechnology and Bioprocess Engineering, 2009
Peroxidase was purified by an ion exchange chromatography followed by gel filtration chromatograp... more Peroxidase was purified by an ion exchange chromatography followed by gel filtration chromatography from dye degrading Bacillus sp. strain VUS. The optimum pH and temperature of the enzyme activity was 3.0 and 65°C, respectively. This enzyme showed more activity with n-propanol than other substrates tested viz. xylidine, 3-(3,4-dihydroxy phenyl) Lalanine (L-DOPA), hydroxyquinone, ethanol, indole, and veratrole. Km value of the enzyme was 0.076 mM towards n-propanol under standard assay conditions. Peroxidase was more active in presence of the metal ions like Li2+, Co2+, K2+, Zn2+, and Cu2+ where as it showed less activity in the presence of Ca2+ and Mn2+. Inhibitors like ethylenediamine tetraacetic acid (EDTA), glutamine, and phenylalanine inhibited the enzyme partially, while sodium azide (NaN3) completely. The crude as well as the purified peroxidase was able to decolourize different industrial dyes. This enzyme decolourized various textile dyes and enhanced percent decolourization in the presence of redox mediators. Aniline was the most effective redox mediator than other mediators tested. Gas chromatography-Mass spectrometry (GC-MS) confirmed the formation of 7-Acetylamino-4-hydroxy-naphthalene-2-sulphonic acid as the final product of Reactive Orange 16 indicating asymmetric cleavage of the dye.
World Journal of Microbiology & Biotechnology, 2010
Bacillus sp. VUS decolorized Red HE7B dye (100%) within 18 h in static anoxic conditions. A signi... more Bacillus sp. VUS decolorized Red HE7B dye (100%) within 18 h in static anoxic conditions. A significant increase in activities of lignin peroxidase, laccase, NADH-DCIP and azo reductase was observed up to complete decolourization of RHE7B. The biodegradation was monitored by UV–Visible spectroscopy (UV–VIS), Fourier Transform Infrared (FTIR) spectroscopy and High Performance Liquid Chromatography (HPLC). The final products 4-methyl-3-(1-sulfo-ethyl)-5-([1,3,5] triazin-2-ylamino)-benzenesulfonic acid; 3-(1-sulfo-ethyl)-5-([1,3,5] triazin-2-ylamino)-benzenesulfonic acid and 3-(1,2-dihydro-[1,3,5] triazin-2-ylamino)-5-sulfomethyl-benzenesulfonic acid were characterized by gas chromatography–mass spectrometry (GC–MS). The phytotoxicity study revealed the non-toxic nature of the generated products with respect to Sorghum bicolor and Triticum aestivum. The metabolites produced after degradation increased the chlorophyll content of crop seedlings. The Ames test revealed the non-mutagenicity and non-carcinogenicity of the degraded products.
International Biodeterioration & Biodegradation, 2010
Different combinations of three organisms (Sphingobacterium sp. ATM, Bacillus odysseyi SUK3, and ... more Different combinations of three organisms (Sphingobacterium sp. ATM, Bacillus odysseyi SUK3, and Pseudomonas desmolyticum NCIM 2112) were used for degradation of textile dye Orange 3R and production of PHAs along with individual strains. Consortium IV was found to be effective among all. The PHAs were produced at 48 h of inoculation optimally, and the highest concentration of dye degraded at that time was found to be 0.8 g l À1 by using consortium IV. The dye degrading enzymes veratryl alcohol oxidase, laccase, DCIP reductase, riboflavin reductase, and azo reductase were found to be active during decolorization of Orange 3R and mixture of dyes. The true colour removal for mixture of dyes using consortium IV was found effective (94.50%). There was significant decrease in biological oxygen demand (BOD) and chemical oxygen demand (COD) values in all individual as well as consortia used from solution of mixture of dyes and textile effluent. Varied amount of PHAs production was observed in all organisms and consortia. Molasses was found to be a good carbon source for PHAs production among all agricultural wastes tested. HPLC, FTIR, GCeMS analysis of samples before and after decolorization of dye confirmed the biotransformation of Orange 3R.
Journal of Applied Microbiology, 2008
Aims: To isolate the potential micro-organism for the degradation of textile disperse dye Brown ... more Aims: To isolate the potential micro-organism for the degradation of textile disperse dye Brown 3 REL and to find out the reaction mechanism.Methods and Results: 16S rDNA analysis revealed an isolate from textile effluent contaminated soil as Bacillus sp. VUS and was able to degrade (100%) dye Brown 3REL within 8 h at static anoxic condition. A significant increase in the activities of lignin peroxidase, laccase and NADH-DCIP reductase was observed up to complete decolourization of Brown 3REL. The optimum temperature required for degradation was 40°C and pH 6·5–12·0. Phyto-toxicity and chemical oxygen demand revealed nontoxic products of dye degradation. The biodegradation was monitored by UV–VIS, FTIR spectroscopy and HPLC. The final products 6,8-dichloro-quinazoline-4-ol and cyclopentanone were characterized by gas chromatography-mass spectrometry. This Bacillus sp. VUS also decolourized (80%) textile dye effluent within 12 h.Conclusions: This study suggests that Bacillus sp. VUS could be a useful tool for textile effluent treatment.Significance and Impact of the Study: The newly isolated Bacillus sp. VUS decolourized 16 textile dyes and textile dye effluent also. It achieved complete biodegradation of Brown 3REL. Phytotoxicity study demonstrated no toxicity of the biodegraded products for plants with respect to Triticum aestivum and Sorghum bicolor.
Biotechnology and Bioprocess Engineering, 2008
The consortium-GB (Galactomyces geotrichum MTCC 1360 and Bacillus sp. VUS) exhibited 100% decolor... more The consortium-GB (Galactomyces geotrichum MTCC 1360 and Bacillus sp. VUS) exhibited 100% decolorization ability with the dye Brown 3REL within 2 h at shaking condition with optima of pH 7 and at 50°C. However, G. geotrichum MTCC 1360 showed 39% decolorization within 24 h and Bacillus sp. VUS took 5 h for 100% decolorization, when incubated individually. Additional carbon and nitrogen sources like, starch, peptone, and urea were found to enhance decolorization. Induction in lignin peroxidase, tyrosinase, and riboflavin reductase was observed in consortium as that of individual organisms. GCMS identification showed different metabolites formed using consortium (2-(6,8-dichloro-quinazolin-4yloxy)-acetyl-urea and 2-(6,8-dichloro-quinazolin-4yloxy)-acetyl-formamide) and Bacillus sp. VUS (6,8-dichloro-4 methoxy-quinazoline) after 2 h of incubation with Brown 3REL. G. geotrichum MTCC 1360 showed minor modifications in structure of Brown 3REL. Phytotoxicity revealed non toxic nature of metabolites. This consortium-GB was also able to decolorize various industrial dyes.
Journal of Molecular Catalysis B-enzymatic, 2009
Environmental Science and Pollution Research
Background, aim, and scope The focus of the present study is to know the potential of bacterial i... more Background, aim, and scope The focus of the present study is to know the potential of bacterial isolate for tannic acid degradation at low temperature. Also, we tried to evaluate the suitability of phytotoxicity testing protocol for the determination of tannic acid toxicity. Methods Screening for tannic acid degrading bacterial strains was carried out by using microbial isolation techniques. The 16S rDNA amplicon of the isolate was used to identify the isolate. The effect of different concentrations of tannic acid and its degradation products on germination of Vigna unguiculata was evaluated. The study was carried out to determine total sugar and starch content of the used seeds and even to check the presence of α-amylase activity during seed germination. Results The isolated bacterium was identified as Klebsiella sp NACASA1 and it showed degradation of tannic acid in 40 (±0.85***) h at 15°C and pH 7.0. A gradual decrease in root/shoot length was observed with increasing concentration of tannic acid. There was 95.11 (±0.24**)% inhibition in α-amylase activity at 20,000 ppm tannic acid, as compared to control. No such effects were observed on germination, root–shoot length, and α-amylase activity with tannic acid degradation products. Conclusions The results obtained confirmed that tannic acid may act as a toxic agent in plant cells. The simple biodegradation process presented in this study was found to be effective in reducing toxicity of tannic acid. Also, it reveals the potential of soil bacterium to degrade tannic acid at low temperature.
Water Air and Soil Pollution, 2011
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L−1) within 6 h u... more Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L−1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L−1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71 ± 0.696 mg dye g−1 cell h−1 for maximum rate (V max) and 112.35 ± 0.34 mg L−1 for the Michaelis constant (K m). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.
Biotechnology and Bioprocess Engineering, 2009
In the present work, we have purified veratryl alcohol oxidase (VAO) enzyme from Comamonas UVS to... more In the present work, we have purified veratryl alcohol oxidase (VAO) enzyme from Comamonas UVS to evaluate its potential to decolorize textile dyes. VAO was purified (13.9 fold) by an ion exchange followed by the size exclusion chromatography. Molecular weight of the VAO was estimated to be about 66 kDa by SDS-PAGE. The optimum pH and temperature of oxidase were 30°C and 65°C, respectively. VAO showed maximum activity with n-propanol among the various substrates (n-propanol, veratryl alcohol, L-dopa, tryptophan, etc.). Under standard assay conditions, Km value of the enzyme was 2.5 mM towards veratrole. The enzyme activity was completely inhibited by 0.5 mM sodium azide. L-cysteine, dithiothreitol, and the metal chelator, EDTA had a slight inhibitory effect. The purified enzyme was able to decolorize textile dyes, Red HE7B (57.5%) and Direct Blue GLL (51.09%) within 15 h at 40 μg/mL concentration. GC-MS analysis of the metabolites suggested oxidative cleavage and desulphonation of these dyes.
Indian Journal of Microbiology
Acinetobacter calcoaceticus NCIM 2890 (A. caloaceticus) was found to decolorize 20 different text... more Acinetobacter calcoaceticus NCIM 2890 (A. caloaceticus) was found to decolorize 20 different textile dyes of various classes. Decolorization of an azo dye amaranth was observed effectively (91%) at static anoxic condition, whereas agitated culture grew well but showed less decolorization (68%) within 48 h of incubation. Induction of intracellular and extracellular lignin peroxidase, intracellular laccase, dichlorophenol indophenol (DCIP) reductase and riboflavin reductase represented their involvement in the biodegradation of amaranth. The products obtained after degradation of Amaranth were characterized as naphthalene sulfamide, hydroxyl naphthalene diazonium and naphthalene diazonium. The germination and growth of Sorghum vulgare and Phaseolus mungo seeds, and the growth of E. coli and Bacillus substilis were not inhibited by the metabolic products of the dye.
Journal of The Science of Food and Agriculture, 2009
BACKGROUND: Aflatoxin contamination of various commodities can occur as a result of infection, ma... more BACKGROUND: Aflatoxin contamination of various commodities can occur as a result of infection, mainly by Aspergillus flavus and Aspergillus parasiticus. Every year, almost 25% of the world's food supply is contaminated by mycotoxins. Aflatoxins B1, B2, G1 and G2, which occur naturally, are significant contaminants of a wide variety of commodities. A number of biological activities have been associated with Ageratum conyzoides. We have therefore investigated the antiaflatoxigenic, antioxidant and antimicrobial activity of essential oils of A. conyzoides. This could help to turn A. conyzoides, a nuisance weed, into a resource.RESULTS: The essential oil of Ageratum conyzoides L. shows the presence of 12 compounds when analyzed by gas chromatography–mass spectrometry. The growth and aflatoxin production of the toxigenic strain Aspergillus parasiticus was completely inhibited by essential oil. All the studied concentrations of the oil demonstrate a reduction in mycelia growth and decreased production of different aflatoxins in fungi, as revealed by liquid chomatographic–tandem mass spectrometric analysis. Volatiles from macerated green leaf tissue of A. conyzoides were also effective against A. parasiticus. The strongest antibacterial activity was observed against the bacteria Staphylococcus aureus and Bacillus subtilis in a disk diffusion bioassay. Essential oil and methanol extract of A. conyzoides L. were assayed for their antioxidant activity. Methanol extract showed the highest antioxidant activity in FRAP and DPPH assay, whereas essential oil showed greater lipid peroxidation inhibition than methanol extract.CONCLUSION: The plant's ethno-medicinal importance, antioxidant potential, inhibitory activity against the Aspergillus group of fungi and production of aflatoxins may add a new dimension to its usefulness in the protection of stored product. Copyright © 2010 Society of Chemical Industry
Biodegradation, 2009
Bacillus sp. VUS decolorized azo dye Navy blue 2GL in 48 h at static anoxic condition in yeast ex... more Bacillus sp. VUS decolorized azo dye Navy blue 2GL in 48 h at static anoxic condition in yeast extract medium, whereas it took only 18 h for the decolorization in presence of CaCl2. Different inducers played role in the decolorization of Navy blue 2GL. CaCl2 found to be the most effective inducer among all inducers tested. The activity of enzymes like lignin peroxidase, laccase and reductases viz. NADH-DCIP, azo and riboflavin induced during decolorization represents their role in the biodegradation. Extracellular LiP and intracellular laccase activity induced with CaCl2. Yeast extract was best medium for faster decolorization than other media. UV–vis spectrophotometer analysis and visual examinations showed decolorization of dye. High performance liquid chromatography, Fourier transforms infrared spectroscopy showed degradation of dye. Gas Chromatography-Mass Spectroscopy revealed formation of 4-Amino-3-(2-bromo-4, 6-dinitro-phenylazo)-phenol and acetic acid 2-(-acetoxy-ethylamino)-ethyl ester as final products. Bacillus sp. VUS also decolorized synthetic effluent. Phytotoxicity study showed detoxification of Navy blue 2GL.
International Journal of Phytoremediation, 2011
Polyphenol oxidase (PPO) purified using DEAE-cellulose and Biogel P-100 column chromatography fro... more Polyphenol oxidase (PPO) purified using DEAE-cellulose and Biogel P-100 column chromatography from banana pulp showed 12.72-fold activity and 2.49% yield. The optimum temperature and pH were found to be 30°C and 7.0, respectively for its activity. Catechol was found to be a suitable substrate for banana pulp PPO that showed Vmax, 0.041 mM min−1 and Km, 1.6 mM. The enzyme activity was inhibited by sodium metabisulfite, citric acid, cysteine, and β-mercaptoethanol at 10 mM concentration. The purified enzyme could decolorize (90%) Direct Red 5B (160 μg mL−1) dye within 48 h and Direct Blue GLL (400 μg mL−1) dye up to 85% within 90 h. The GC-MS analysis indicated the presence of 4-hydroxy-benzenesulfonic acid and Naphthalene-1,2,3,6-tetraol in the degradation products of Direct Red 5B, and 5-(4-Diazenyl-naphthalene-1-ylazo)-8-hydroxy-naphthalene-2-sulfonic acid and 2-(4-Diazenyl-naphthalene-1-ylazo)-benzenesulfonic acid in the degradation products of Direct Blue GLL.
Journal of Hazardous Materials, 2008
Soil samples collected from the vicinity of "Manpasand textile industry", located near Ichalkaran... more Soil samples collected from the vicinity of "Manpasand textile industry", located near Ichalkaranji, India were studied for screening and isolation of bacterial strains capable of degradation of textile dyes. A potential strain was selected on the basis of rapid dye degradation and later identified as Comamonas sp. UVS. Comamonas sp. UVS showed 100% decolorization of Direct Red 5B (DR5B) dye at 40 • C and pH 6.5. The maximum Direct Red 5B concentration decolorized was 1100 mg/l in nutrient broth within 125 h. A numerical simulation with the Michaelis-Menten kinetics model gives an optimal value of 16.01 ± 0.36 mg dye/g cell/h for maximum rate (V max ) and 7.97 ± 0.21 mg/l for the Michaelis constant (K m ). The induction in the activities of laccase and LiP was observed during decolorization. These enzymes were inhibited by the addition of sodium azide. The biodegradation was monitored by UV-vis, FTIR spectroscopy and HPLC. The GCMS analysis indicated the presence of 7-benzoylamino-3diazenyl-4-hydroxy-naphthalene-2-sulfonic acid in degraded product of the dye. The germination of Triticum aestivum seeds was inhibited with DR5B treatment but not with the treatment of dye degradation products. .in (S.P. Govindwar). decomposition processes . Wide range of microorganisms is capable of decolorizing a variety of dyes include some bacteria, fungi, yeasts and algae . Various fungal cultures mainly belonging to white rot fungi have been described to oxidize synthetic dyes . However, the majority of white rot fungi described require nitrogen-limiting conditions and long time periods to decolorize dyes, which limits their applications to the laboratory level. In the present study, we have focused our attention on the isolation of dye decolorizing bacterial strains from dye-contaminated soil from an industrial site. We have reported the decolorization ability of the isolated bacteria for several industrial dyes using various conditions. The intermediates formed during the dye degradation have been analyzed.
Ecotoxicology and Environmental Safety, 2010
This work presents role of different enzymes in decolorization of industrial dye Orange T4LL by B... more This work presents role of different enzymes in decolorization of industrial dye Orange T4LL by Bacillus sp. VUS. Bacillus sp. strain VUS decolorized dye Orange T4LL, under static anoxic condition in 24 h. During decolorization of Orange T4LL a significant induction in the activities of lignin peroxidase, tyrosinase, and reductases (NADH-DCIP, azo, and riboflavin) was observed. The biodegradation was monitored by Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and high performance liquid chromatography. The final products 4-methyl-2-o-tolylazo-benzene-1,3-diamine and [3-(phenyl-hydrazono)-cyclohexa-1,4-dienyl]-methanol were characterized by gas chromatography-mass spectroscopy. Phytotoxicity, COD, and BOD revealed non-toxicity of degraded products. Phytotoxicity study demonstrated non-toxicity of the biodegraded products for crop plants with respect to Triticum aestivum and Sorghum bicolor. Bacillus sp. VUS with its enzyme system could be a useful tool for textile effluent treatment.
Journal of Chemical Technology and Biotechnology, 2009
BACKGROUND: The present work aims to study the production of lignin peroxidase (LiP) enzyme by Co... more BACKGROUND: The present work aims to study the production of lignin peroxidase (LiP) enzyme by Comamonas sp UVS using various media, and lignocellulosic waste materials, and its effect on decolorization of Direct Blue GLL (DBGLL).RESULTS: Yeast extract medium was found to be more effective for the production of LiP and also for the decolorization of DBGLL. The bagasse powder along with yeast extract induced LiP activity. Comamonas sp UVS decolorized DBGLL dye (50 mg L−1) within 13 h at static condition in YE broth. It could degrade up to 300 mg L−1 of dye within 55 h. The maximum rate (Vmax) of decolorization was 12.41 ± 0.55 mg dye g cell−1 h−1 with the Michaelis constant (Km) value as 6.20 ± 0.27 mg L−1. The biodegradation was monitored by UV-Vis, GC-MS and HPLC.CONCLUSION: The use of agricultural by-products for the activity enhancement of the ligninolytic enzymes is a cost effective process. It also resolves the problem of the disposal of agro-residues. This system can be applied for the degradation of different recalcitrant compounds. Copyright © 2008 Society of Chemical Industry
Biotechnology and Bioprocess Engineering, 2009
Peroxidase was purified by an ion exchange chromatography followed by gel filtration chromatograp... more Peroxidase was purified by an ion exchange chromatography followed by gel filtration chromatography from dye degrading Bacillus sp. strain VUS. The optimum pH and temperature of the enzyme activity was 3.0 and 65°C, respectively. This enzyme showed more activity with n-propanol than other substrates tested viz. xylidine, 3-(3,4-dihydroxy phenyl) Lalanine (L-DOPA), hydroxyquinone, ethanol, indole, and veratrole. Km value of the enzyme was 0.076 mM towards n-propanol under standard assay conditions. Peroxidase was more active in presence of the metal ions like Li2+, Co2+, K2+, Zn2+, and Cu2+ where as it showed less activity in the presence of Ca2+ and Mn2+. Inhibitors like ethylenediamine tetraacetic acid (EDTA), glutamine, and phenylalanine inhibited the enzyme partially, while sodium azide (NaN3) completely. The crude as well as the purified peroxidase was able to decolourize different industrial dyes. This enzyme decolourized various textile dyes and enhanced percent decolourization in the presence of redox mediators. Aniline was the most effective redox mediator than other mediators tested. Gas chromatography-Mass spectrometry (GC-MS) confirmed the formation of 7-Acetylamino-4-hydroxy-naphthalene-2-sulphonic acid as the final product of Reactive Orange 16 indicating asymmetric cleavage of the dye.
World Journal of Microbiology & Biotechnology, 2010
Bacillus sp. VUS decolorized Red HE7B dye (100%) within 18 h in static anoxic conditions. A signi... more Bacillus sp. VUS decolorized Red HE7B dye (100%) within 18 h in static anoxic conditions. A significant increase in activities of lignin peroxidase, laccase, NADH-DCIP and azo reductase was observed up to complete decolourization of RHE7B. The biodegradation was monitored by UV–Visible spectroscopy (UV–VIS), Fourier Transform Infrared (FTIR) spectroscopy and High Performance Liquid Chromatography (HPLC). The final products 4-methyl-3-(1-sulfo-ethyl)-5-([1,3,5] triazin-2-ylamino)-benzenesulfonic acid; 3-(1-sulfo-ethyl)-5-([1,3,5] triazin-2-ylamino)-benzenesulfonic acid and 3-(1,2-dihydro-[1,3,5] triazin-2-ylamino)-5-sulfomethyl-benzenesulfonic acid were characterized by gas chromatography–mass spectrometry (GC–MS). The phytotoxicity study revealed the non-toxic nature of the generated products with respect to Sorghum bicolor and Triticum aestivum. The metabolites produced after degradation increased the chlorophyll content of crop seedlings. The Ames test revealed the non-mutagenicity and non-carcinogenicity of the degraded products.
International Biodeterioration & Biodegradation, 2010
Different combinations of three organisms (Sphingobacterium sp. ATM, Bacillus odysseyi SUK3, and ... more Different combinations of three organisms (Sphingobacterium sp. ATM, Bacillus odysseyi SUK3, and Pseudomonas desmolyticum NCIM 2112) were used for degradation of textile dye Orange 3R and production of PHAs along with individual strains. Consortium IV was found to be effective among all. The PHAs were produced at 48 h of inoculation optimally, and the highest concentration of dye degraded at that time was found to be 0.8 g l À1 by using consortium IV. The dye degrading enzymes veratryl alcohol oxidase, laccase, DCIP reductase, riboflavin reductase, and azo reductase were found to be active during decolorization of Orange 3R and mixture of dyes. The true colour removal for mixture of dyes using consortium IV was found effective (94.50%). There was significant decrease in biological oxygen demand (BOD) and chemical oxygen demand (COD) values in all individual as well as consortia used from solution of mixture of dyes and textile effluent. Varied amount of PHAs production was observed in all organisms and consortia. Molasses was found to be a good carbon source for PHAs production among all agricultural wastes tested. HPLC, FTIR, GCeMS analysis of samples before and after decolorization of dye confirmed the biotransformation of Orange 3R.
Journal of Applied Microbiology, 2008
Aims: To isolate the potential micro-organism for the degradation of textile disperse dye Brown ... more Aims: To isolate the potential micro-organism for the degradation of textile disperse dye Brown 3 REL and to find out the reaction mechanism.Methods and Results: 16S rDNA analysis revealed an isolate from textile effluent contaminated soil as Bacillus sp. VUS and was able to degrade (100%) dye Brown 3REL within 8 h at static anoxic condition. A significant increase in the activities of lignin peroxidase, laccase and NADH-DCIP reductase was observed up to complete decolourization of Brown 3REL. The optimum temperature required for degradation was 40°C and pH 6·5–12·0. Phyto-toxicity and chemical oxygen demand revealed nontoxic products of dye degradation. The biodegradation was monitored by UV–VIS, FTIR spectroscopy and HPLC. The final products 6,8-dichloro-quinazoline-4-ol and cyclopentanone were characterized by gas chromatography-mass spectrometry. This Bacillus sp. VUS also decolourized (80%) textile dye effluent within 12 h.Conclusions: This study suggests that Bacillus sp. VUS could be a useful tool for textile effluent treatment.Significance and Impact of the Study: The newly isolated Bacillus sp. VUS decolourized 16 textile dyes and textile dye effluent also. It achieved complete biodegradation of Brown 3REL. Phytotoxicity study demonstrated no toxicity of the biodegraded products for plants with respect to Triticum aestivum and Sorghum bicolor.
Biotechnology and Bioprocess Engineering, 2008
The consortium-GB (Galactomyces geotrichum MTCC 1360 and Bacillus sp. VUS) exhibited 100% decolor... more The consortium-GB (Galactomyces geotrichum MTCC 1360 and Bacillus sp. VUS) exhibited 100% decolorization ability with the dye Brown 3REL within 2 h at shaking condition with optima of pH 7 and at 50°C. However, G. geotrichum MTCC 1360 showed 39% decolorization within 24 h and Bacillus sp. VUS took 5 h for 100% decolorization, when incubated individually. Additional carbon and nitrogen sources like, starch, peptone, and urea were found to enhance decolorization. Induction in lignin peroxidase, tyrosinase, and riboflavin reductase was observed in consortium as that of individual organisms. GCMS identification showed different metabolites formed using consortium (2-(6,8-dichloro-quinazolin-4yloxy)-acetyl-urea and 2-(6,8-dichloro-quinazolin-4yloxy)-acetyl-formamide) and Bacillus sp. VUS (6,8-dichloro-4 methoxy-quinazoline) after 2 h of incubation with Brown 3REL. G. geotrichum MTCC 1360 showed minor modifications in structure of Brown 3REL. Phytotoxicity revealed non toxic nature of metabolites. This consortium-GB was also able to decolorize various industrial dyes.
Journal of Molecular Catalysis B-enzymatic, 2009
Environmental Science and Pollution Research
Background, aim, and scope The focus of the present study is to know the potential of bacterial i... more Background, aim, and scope The focus of the present study is to know the potential of bacterial isolate for tannic acid degradation at low temperature. Also, we tried to evaluate the suitability of phytotoxicity testing protocol for the determination of tannic acid toxicity. Methods Screening for tannic acid degrading bacterial strains was carried out by using microbial isolation techniques. The 16S rDNA amplicon of the isolate was used to identify the isolate. The effect of different concentrations of tannic acid and its degradation products on germination of Vigna unguiculata was evaluated. The study was carried out to determine total sugar and starch content of the used seeds and even to check the presence of α-amylase activity during seed germination. Results The isolated bacterium was identified as Klebsiella sp NACASA1 and it showed degradation of tannic acid in 40 (±0.85***) h at 15°C and pH 7.0. A gradual decrease in root/shoot length was observed with increasing concentration of tannic acid. There was 95.11 (±0.24**)% inhibition in α-amylase activity at 20,000 ppm tannic acid, as compared to control. No such effects were observed on germination, root–shoot length, and α-amylase activity with tannic acid degradation products. Conclusions The results obtained confirmed that tannic acid may act as a toxic agent in plant cells. The simple biodegradation process presented in this study was found to be effective in reducing toxicity of tannic acid. Also, it reveals the potential of soil bacterium to degrade tannic acid at low temperature.
Water Air and Soil Pollution, 2011
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L−1) within 6 h u... more Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L−1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L−1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71 ± 0.696 mg dye g−1 cell h−1 for maximum rate (V max) and 112.35 ± 0.34 mg L−1 for the Michaelis constant (K m). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.
Biotechnology and Bioprocess Engineering, 2009
In the present work, we have purified veratryl alcohol oxidase (VAO) enzyme from Comamonas UVS to... more In the present work, we have purified veratryl alcohol oxidase (VAO) enzyme from Comamonas UVS to evaluate its potential to decolorize textile dyes. VAO was purified (13.9 fold) by an ion exchange followed by the size exclusion chromatography. Molecular weight of the VAO was estimated to be about 66 kDa by SDS-PAGE. The optimum pH and temperature of oxidase were 30°C and 65°C, respectively. VAO showed maximum activity with n-propanol among the various substrates (n-propanol, veratryl alcohol, L-dopa, tryptophan, etc.). Under standard assay conditions, Km value of the enzyme was 2.5 mM towards veratrole. The enzyme activity was completely inhibited by 0.5 mM sodium azide. L-cysteine, dithiothreitol, and the metal chelator, EDTA had a slight inhibitory effect. The purified enzyme was able to decolorize textile dyes, Red HE7B (57.5%) and Direct Blue GLL (51.09%) within 15 h at 40 μg/mL concentration. GC-MS analysis of the metabolites suggested oxidative cleavage and desulphonation of these dyes.
Indian Journal of Microbiology
Acinetobacter calcoaceticus NCIM 2890 (A. caloaceticus) was found to decolorize 20 different text... more Acinetobacter calcoaceticus NCIM 2890 (A. caloaceticus) was found to decolorize 20 different textile dyes of various classes. Decolorization of an azo dye amaranth was observed effectively (91%) at static anoxic condition, whereas agitated culture grew well but showed less decolorization (68%) within 48 h of incubation. Induction of intracellular and extracellular lignin peroxidase, intracellular laccase, dichlorophenol indophenol (DCIP) reductase and riboflavin reductase represented their involvement in the biodegradation of amaranth. The products obtained after degradation of Amaranth were characterized as naphthalene sulfamide, hydroxyl naphthalene diazonium and naphthalene diazonium. The germination and growth of Sorghum vulgare and Phaseolus mungo seeds, and the growth of E. coli and Bacillus substilis were not inhibited by the metabolic products of the dye.