Ursula Theuretzbacher - Academia.edu (original) (raw)
Uploads
Papers by Ursula Theuretzbacher
Clinical Pharmacokinetics, 2010
Journal of Antimicrobial Chemotherapy, 2007
Over the last decades, numerous papers have appeared-and still are appearing-that describe concen... more Over the last decades, numerous papers have appeared-and still are appearing-that describe concentrations in tissues in an effort to predict the efficacy of an antimicrobial agent based on these concentrations and MICs for microorganisms. A common method is to use measurements of concentrations in tissue homogenates, comparing these with values derived from the corresponding blood samples and on that basis draw conclusions with respect to the potential clinical use of the drug. This approach is not justifiable for a number of reasons that includes both pharmacokinetic as well as pharmacodynamic causes. This way of presenting data with the derived conclusions is often misleading and may ultimately be harmful in patient care.
Over the last decades, numerous papers have appeared-and still are appearing-that describe concen... more Over the last decades, numerous papers have appeared-and still are appearing-that describe concentrations in tissues in an effort to predict the efficacy of an antimicrobial agent based on these concentrations and MICs for microorganisms. A common method is to use measurements of concentrations in tissue homogenates, comparing these with values derived from the corresponding blood samples and on that basis draw conclusions with respect to the potential clinical use of the drug. This approach is not justifiable for a number of reasons that includes both pharmacokinetic as well as pharmacodynamic causes. This way of presenting data with the derived conclusions is often misleading and may ultimately be harmful in patient care.
Drug Resistance Updates, 2011
There is a growing need to optimize the use of old and new antibiotics to treat serious as well a... more There is a growing need to optimize the use of old and new antibiotics to treat serious as well as less serious infections. The topic of how to use pharmacokinetic and pharmacodynamic (PK/PD) knowledge to conserve antibiotics for the future was elaborated on in a workshop of the conference (The conference "The Global Need for Effective Antibiotics -moving towards concerted action", ReAct, Uppsala, Sweden, 2010). The optimization of dosing regimens is accomplished by choosing the dose and schedule that results in the antimicrobial exposure that will achieve the microbiological and clinical outcome desired while simultaneously suppressing emergence of resistance. PK/PD of antimicrobial agents describe how the therapeutic drug effect is dependent on the potency of a drug against a microorganism and the exposure (the concentration of antimicrobial available for effect over time). The description and modeling of these relationships quantitatively then allow for a rational approach to dose optimization and several strategies to that purpose are described. These strategies include not only the dosing regimen itself but also the duration of therapy, preventing collateral damage through inappropriate use and the application of PK/PD in drug development. Furthermore, PK/PD relationships of older antibiotics need to be urgently established. The need for global harmonization of breakpoints is also suggested and would add efficacy to antibiotic therapy. For each of the strategies, a number of priority actions are provided.
Antimicrobial Agents and Chemotherapy, 2011
Although the influence of protein binding (PB) on antibacterial activity has been reported for ma... more Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested.
Current Opinion in Pharmacology, 2011
Current Opinion in Pharmacology, 2007
Clinical Pharmacokinetics, 2010
Journal of Antimicrobial Chemotherapy, 2007
Over the last decades, numerous papers have appeared-and still are appearing-that describe concen... more Over the last decades, numerous papers have appeared-and still are appearing-that describe concentrations in tissues in an effort to predict the efficacy of an antimicrobial agent based on these concentrations and MICs for microorganisms. A common method is to use measurements of concentrations in tissue homogenates, comparing these with values derived from the corresponding blood samples and on that basis draw conclusions with respect to the potential clinical use of the drug. This approach is not justifiable for a number of reasons that includes both pharmacokinetic as well as pharmacodynamic causes. This way of presenting data with the derived conclusions is often misleading and may ultimately be harmful in patient care.
Over the last decades, numerous papers have appeared-and still are appearing-that describe concen... more Over the last decades, numerous papers have appeared-and still are appearing-that describe concentrations in tissues in an effort to predict the efficacy of an antimicrobial agent based on these concentrations and MICs for microorganisms. A common method is to use measurements of concentrations in tissue homogenates, comparing these with values derived from the corresponding blood samples and on that basis draw conclusions with respect to the potential clinical use of the drug. This approach is not justifiable for a number of reasons that includes both pharmacokinetic as well as pharmacodynamic causes. This way of presenting data with the derived conclusions is often misleading and may ultimately be harmful in patient care.
Drug Resistance Updates, 2011
There is a growing need to optimize the use of old and new antibiotics to treat serious as well a... more There is a growing need to optimize the use of old and new antibiotics to treat serious as well as less serious infections. The topic of how to use pharmacokinetic and pharmacodynamic (PK/PD) knowledge to conserve antibiotics for the future was elaborated on in a workshop of the conference (The conference "The Global Need for Effective Antibiotics -moving towards concerted action", ReAct, Uppsala, Sweden, 2010). The optimization of dosing regimens is accomplished by choosing the dose and schedule that results in the antimicrobial exposure that will achieve the microbiological and clinical outcome desired while simultaneously suppressing emergence of resistance. PK/PD of antimicrobial agents describe how the therapeutic drug effect is dependent on the potency of a drug against a microorganism and the exposure (the concentration of antimicrobial available for effect over time). The description and modeling of these relationships quantitatively then allow for a rational approach to dose optimization and several strategies to that purpose are described. These strategies include not only the dosing regimen itself but also the duration of therapy, preventing collateral damage through inappropriate use and the application of PK/PD in drug development. Furthermore, PK/PD relationships of older antibiotics need to be urgently established. The need for global harmonization of breakpoints is also suggested and would add efficacy to antibiotic therapy. For each of the strategies, a number of priority actions are provided.
Antimicrobial Agents and Chemotherapy, 2011
Although the influence of protein binding (PB) on antibacterial activity has been reported for ma... more Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested.
Current Opinion in Pharmacology, 2011
Current Opinion in Pharmacology, 2007