Monica Vaccari - Academia.edu (original) (raw)

Papers by Monica Vaccari

Research paper thumbnail of In vitro effects of fenretinide on cell-matrix interactions

Anticancer research

Understanding the molecular basis of the metastatic spread of cancer and the underlying mechanism... more Understanding the molecular basis of the metastatic spread of cancer and the underlying mechanisms is crucial for the development and appropriate clinical use of novel therapeutic agents directed at prevention of metastasis. Retinoids have been reported to inhibit cell proliferation, modulate cell differentiation, enhance apoptosis and to prevent the conversion of in situ cancer to locally invasive malignancy by suppressing the invasive process as well as by inhibiting angiogenesis. Fenretinide (4-HPR), a synthetic derivative of retinoic acid, is less toxic than natural retinoids and is active in the prevention and treatment of a variety of tumours in animal models. Its efficacy in cancer chemoprevention and therapy has been investigated in clinical trials. In order to evaluate the effects of 4-HPR on the late stages of tumour progression, chemically transformed BALB/c 3T3 cells, showing a fully malignant phenotype, were exposed to 4-HPR (0.25-10 microM; 72 hours pre-treatment) and ...

Research paper thumbnail of Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge

PLOS Pathogens, 2015

Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few stud... more Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males) was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1-13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC and ADCP activities were similar. The complex challenge outcomes may reflect differences in IgG subtypes, Fc glycosylation, Fc-R polymorphisms, and/or the microbiome, key areas for future studies. This first demonstration of a sex-difference in SIV vaccine-induced protection emphasizes the need for sex-balancing in vaccine trials. Our results highlight the importance of mucosal immunity and memory B cells at the SIV exposure site for protection.

Research paper thumbnail of 1,2-Dibromoethane as an initiating agent for cell transformation

Japanese journal of cancer research: Gann

The two-stage transformation assay increases the sensitivity of cells to chemicals and permits de... more The two-stage transformation assay increases the sensitivity of cells to chemicals and permits detection of carcinogens acting as initiating agents. 1,2-Dibromoethane, a representative halogenated aliphatic, has been tested in the two-stage BALB/c 3T3 cells transformation test at dosage from 16 microM to 128 microM. This dose range is much lower than those previously found efficient in transforming BALB/c 3T3 cells. Apart from the lowest dose, which induced borderline effects, all the other assayed dosages appeared to induce heritable changes in the target cells. The initiated cells were revealed as fully transformed foci both in the combination with a chronic promoting treatment and also by allowing cells to perform more rounds of cell replication. The results clearly show that 1,2-dibromoethane can act as an initiator of cell transformation.

Research paper thumbnail of Multidrug resistance and malignancy in human osteosarcoma

Cancer Research

In osteosarcoma, resistance to chemotherapy and metastatic spread are the most important mechanis... more In osteosarcoma, resistance to chemotherapy and metastatic spread are the most important mechanisms responsible for the failure of current multimodal therapeutic programs. We have shown previously that overexpression of the MDR1 gene product P-glycoprotein is the most important predictor of an adverse clinical course in patients with osteosarcoma. treated with chemotherapy. In this study, we analyzed the relationship between P-glycoprotein expression and local aggressiveness and systemic dissemination of multidrug-resistant (MDR) human osteosarcoma cells. Compared to parental sensitive cells, MDR cells showed a decreased tumorigenicity,and metastatic ability in athymic mice, together with a reduced migratory and invasive ability and a lower homotypic adhesion ability in vitro, suggesting that P-glycoprotein overexpression is associated with a less malignant phenotype. These experimental observations were confirmed by clinical data. In fact, the time of appearance of lung metastases ...

Research paper thumbnail of Effect of lipoic acid on foci forming capacities of transformed cells

Research paper thumbnail of An improved classification of foci for carcinogenicity testing by statistical descriptors

Toxicology in Vitro, 2015

Carcinogenesis is a multi-step process involving genetic alterations and non-genotoxic mechanisms... more Carcinogenesis is a multi-step process involving genetic alterations and non-genotoxic mechanisms. The in vitro cell transformation assay (CTA) is a promising tool for both genotoxic and non-genotoxic carcinogenesis. CTA relies on the ability of cells (e.g. BALB/c 3T3 mouse embryo fibroblasts) to develop a transformed phenotype after the treatment with suspected carcinogens. The classification of the transformed phenotype is based on coded morphological features, which are scored under a light microscope by trained experts. This procedure is time-consuming and somewhat prone to subjectivity. Herewith we provide a promising approach based on image analysis to support the scoring of malignant foci in BALB/c 3T3 CTA. The image analysis system is a quantitative approach, based on measuring features of malignant foci: dimension, multilayered growth, and invasivity into the surrounding monolayer of non-transformed cells. A logistic regression model was developed to estimate the probability for each focus to be transformed as a function of three statistical image descriptors. The estimated sensitivity of the derived classifier (untransformed against Type III) was 0.9, with an Area Under the Curve (AUC) value equal to 0.90 under the Receiver Operating Characteristics (ROC) curve.

Research paper thumbnail of P19-50 LB. Role of vaccine-induced innate and adaptive immunity in controlling mucosal transmission of SIV in macaques

Research paper thumbnail of Environmental immune disruptors, inflammation and cancer risk

Carcinogenesis, 2015

An emerging area in environmental toxicology is the role that chemicals and chemical mixtures hav... more An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular...

Research paper thumbnail of The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling

Carcinogenesis, 2015

The aim of this work is to review current knowledge relating the established cancer hallmark, sus... more The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.

Research paper thumbnail of Causes of genome instability: the effect of low dose chemical exposures in modern society

Carcinogenesis, 2015

Genome instability is a prerequisite for the development of cancer. It occurs when genome mainten... more Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic m...

Research paper thumbnail of Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

Carcinogenesis, 2015

As part of the Halifax Project, this review brings attention to the potential effects of environm... more As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.

Research paper thumbnail of The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis

Carcinogenesis, 2015

The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures an... more The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.

Research paper thumbnail of The effect of environmental chemicals on the tumor microenvironment

Carcinogenesis, 2015

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect... more Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through ...

Research paper thumbnail of Disruptive chemicals, senescence and immortality

Carcinogenesis, 2015

Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role... more Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible fo...

Research paper thumbnail of Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

Carcinogenesis, 2015

Environmental contributions to cancer development are widely accepted, but only a fraction of all... more Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high through...

Research paper thumbnail of Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

Carcinogenesis, 2015

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but c... more Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effe...

Research paper thumbnail of Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death

Carcinogenesis, 2015

Cell death is a process of dying within biological cells that are ceasing to function. This proce... more Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototyp...

Research paper thumbnail of Microscale purification of antigen-specific antibodies

Journal of Immunological Methods, 2015

Glycosylation of the Fc domain is an important driver of antibody effector function. While assess... more Glycosylation of the Fc domain is an important driver of antibody effector function. While assessment of antibody glycoform compositions observed across total plasma IgG has identified differences associated with a variety of clinical conditions, in many cases it is the glycosylation state of only antibodies against a specific antigen or set of antigens that may be of interest, for example, in defining the potential effector function of antibodies produced during disease or after vaccination. Historically, glycoprofiling such antigen-specific antibodies in clinical samples has been challenging due to their low prevalence, the high sample requirement for most methods of glycan determination, and the lack of high-throughput purification methods. New methods of glycoprofiling with lower sample requirements and higher throughput have motivated the development of microscale and automatable methods for purification of antigen-specific antibodies from polyclonal sources such as clinical serum samples. In this work, we present a robot-compatible 96-well plate-based method for purification of antigen-specific antibodies, suitable for such population level glycosylation screening. We demonstrate the utility of this method across multiple antibody sources, using both purified plasma IgG and plasma, and across multiple different antigen types, with enrichment factors greater than 1000-fold observed. Using an on-column IdeS protease treatment, we further describe staged release of Fc and Fab domains, allowing for glycoprofiling of each domain.

Research paper thumbnail of Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions

Carcinogenesis, Jan 22, 2015

An increasing number of studies suggest an important role of host immunity as a barrier to tumor ... more An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides...

Research paper thumbnail of 509 POSTER Evaluation of in vitro toxicity and efficacy of ferutinin, a natural promising chemoprevantive compound

European Journal of Cancer Supplements, 2006

Research paper thumbnail of In vitro effects of fenretinide on cell-matrix interactions

Anticancer research

Understanding the molecular basis of the metastatic spread of cancer and the underlying mechanism... more Understanding the molecular basis of the metastatic spread of cancer and the underlying mechanisms is crucial for the development and appropriate clinical use of novel therapeutic agents directed at prevention of metastasis. Retinoids have been reported to inhibit cell proliferation, modulate cell differentiation, enhance apoptosis and to prevent the conversion of in situ cancer to locally invasive malignancy by suppressing the invasive process as well as by inhibiting angiogenesis. Fenretinide (4-HPR), a synthetic derivative of retinoic acid, is less toxic than natural retinoids and is active in the prevention and treatment of a variety of tumours in animal models. Its efficacy in cancer chemoprevention and therapy has been investigated in clinical trials. In order to evaluate the effects of 4-HPR on the late stages of tumour progression, chemically transformed BALB/c 3T3 cells, showing a fully malignant phenotype, were exposed to 4-HPR (0.25-10 microM; 72 hours pre-treatment) and ...

Research paper thumbnail of Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge

PLOS Pathogens, 2015

Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few stud... more Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males) was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1-13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC and ADCP activities were similar. The complex challenge outcomes may reflect differences in IgG subtypes, Fc glycosylation, Fc-R polymorphisms, and/or the microbiome, key areas for future studies. This first demonstration of a sex-difference in SIV vaccine-induced protection emphasizes the need for sex-balancing in vaccine trials. Our results highlight the importance of mucosal immunity and memory B cells at the SIV exposure site for protection.

Research paper thumbnail of 1,2-Dibromoethane as an initiating agent for cell transformation

Japanese journal of cancer research: Gann

The two-stage transformation assay increases the sensitivity of cells to chemicals and permits de... more The two-stage transformation assay increases the sensitivity of cells to chemicals and permits detection of carcinogens acting as initiating agents. 1,2-Dibromoethane, a representative halogenated aliphatic, has been tested in the two-stage BALB/c 3T3 cells transformation test at dosage from 16 microM to 128 microM. This dose range is much lower than those previously found efficient in transforming BALB/c 3T3 cells. Apart from the lowest dose, which induced borderline effects, all the other assayed dosages appeared to induce heritable changes in the target cells. The initiated cells were revealed as fully transformed foci both in the combination with a chronic promoting treatment and also by allowing cells to perform more rounds of cell replication. The results clearly show that 1,2-dibromoethane can act as an initiator of cell transformation.

Research paper thumbnail of Multidrug resistance and malignancy in human osteosarcoma

Cancer Research

In osteosarcoma, resistance to chemotherapy and metastatic spread are the most important mechanis... more In osteosarcoma, resistance to chemotherapy and metastatic spread are the most important mechanisms responsible for the failure of current multimodal therapeutic programs. We have shown previously that overexpression of the MDR1 gene product P-glycoprotein is the most important predictor of an adverse clinical course in patients with osteosarcoma. treated with chemotherapy. In this study, we analyzed the relationship between P-glycoprotein expression and local aggressiveness and systemic dissemination of multidrug-resistant (MDR) human osteosarcoma cells. Compared to parental sensitive cells, MDR cells showed a decreased tumorigenicity,and metastatic ability in athymic mice, together with a reduced migratory and invasive ability and a lower homotypic adhesion ability in vitro, suggesting that P-glycoprotein overexpression is associated with a less malignant phenotype. These experimental observations were confirmed by clinical data. In fact, the time of appearance of lung metastases ...

Research paper thumbnail of Effect of lipoic acid on foci forming capacities of transformed cells

Research paper thumbnail of An improved classification of foci for carcinogenicity testing by statistical descriptors

Toxicology in Vitro, 2015

Carcinogenesis is a multi-step process involving genetic alterations and non-genotoxic mechanisms... more Carcinogenesis is a multi-step process involving genetic alterations and non-genotoxic mechanisms. The in vitro cell transformation assay (CTA) is a promising tool for both genotoxic and non-genotoxic carcinogenesis. CTA relies on the ability of cells (e.g. BALB/c 3T3 mouse embryo fibroblasts) to develop a transformed phenotype after the treatment with suspected carcinogens. The classification of the transformed phenotype is based on coded morphological features, which are scored under a light microscope by trained experts. This procedure is time-consuming and somewhat prone to subjectivity. Herewith we provide a promising approach based on image analysis to support the scoring of malignant foci in BALB/c 3T3 CTA. The image analysis system is a quantitative approach, based on measuring features of malignant foci: dimension, multilayered growth, and invasivity into the surrounding monolayer of non-transformed cells. A logistic regression model was developed to estimate the probability for each focus to be transformed as a function of three statistical image descriptors. The estimated sensitivity of the derived classifier (untransformed against Type III) was 0.9, with an Area Under the Curve (AUC) value equal to 0.90 under the Receiver Operating Characteristics (ROC) curve.

Research paper thumbnail of P19-50 LB. Role of vaccine-induced innate and adaptive immunity in controlling mucosal transmission of SIV in macaques

Research paper thumbnail of Environmental immune disruptors, inflammation and cancer risk

Carcinogenesis, 2015

An emerging area in environmental toxicology is the role that chemicals and chemical mixtures hav... more An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular...

Research paper thumbnail of The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling

Carcinogenesis, 2015

The aim of this work is to review current knowledge relating the established cancer hallmark, sus... more The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.

Research paper thumbnail of Causes of genome instability: the effect of low dose chemical exposures in modern society

Carcinogenesis, 2015

Genome instability is a prerequisite for the development of cancer. It occurs when genome mainten... more Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic m...

Research paper thumbnail of Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

Carcinogenesis, 2015

As part of the Halifax Project, this review brings attention to the potential effects of environm... more As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.

Research paper thumbnail of The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis

Carcinogenesis, 2015

The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures an... more The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.

Research paper thumbnail of The effect of environmental chemicals on the tumor microenvironment

Carcinogenesis, 2015

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect... more Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through ...

Research paper thumbnail of Disruptive chemicals, senescence and immortality

Carcinogenesis, 2015

Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role... more Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible fo...

Research paper thumbnail of Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

Carcinogenesis, 2015

Environmental contributions to cancer development are widely accepted, but only a fraction of all... more Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high through...

Research paper thumbnail of Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

Carcinogenesis, 2015

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but c... more Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effe...

Research paper thumbnail of Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death

Carcinogenesis, 2015

Cell death is a process of dying within biological cells that are ceasing to function. This proce... more Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototyp...

Research paper thumbnail of Microscale purification of antigen-specific antibodies

Journal of Immunological Methods, 2015

Glycosylation of the Fc domain is an important driver of antibody effector function. While assess... more Glycosylation of the Fc domain is an important driver of antibody effector function. While assessment of antibody glycoform compositions observed across total plasma IgG has identified differences associated with a variety of clinical conditions, in many cases it is the glycosylation state of only antibodies against a specific antigen or set of antigens that may be of interest, for example, in defining the potential effector function of antibodies produced during disease or after vaccination. Historically, glycoprofiling such antigen-specific antibodies in clinical samples has been challenging due to their low prevalence, the high sample requirement for most methods of glycan determination, and the lack of high-throughput purification methods. New methods of glycoprofiling with lower sample requirements and higher throughput have motivated the development of microscale and automatable methods for purification of antigen-specific antibodies from polyclonal sources such as clinical serum samples. In this work, we present a robot-compatible 96-well plate-based method for purification of antigen-specific antibodies, suitable for such population level glycosylation screening. We demonstrate the utility of this method across multiple antibody sources, using both purified plasma IgG and plasma, and across multiple different antigen types, with enrichment factors greater than 1000-fold observed. Using an on-column IdeS protease treatment, we further describe staged release of Fc and Fab domains, allowing for glycoprofiling of each domain.

Research paper thumbnail of Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions

Carcinogenesis, Jan 22, 2015

An increasing number of studies suggest an important role of host immunity as a barrier to tumor ... more An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides...

Research paper thumbnail of 509 POSTER Evaluation of in vitro toxicity and efficacy of ferutinin, a natural promising chemoprevantive compound

European Journal of Cancer Supplements, 2006