Vaclava Bauerova - Academia.edu (original) (raw)

Uploads

Papers by Vaclava Bauerova

Research paper thumbnail of Intracellular aspartic proteinase Apr1p of Candida albicans is required for morphological transition under nitrogen-limited conditions but not for macrophage killing

Folia Microbiologica, 2014

Vacuolar hydrolases have been thoroughly characterized in Saccharomyces cerevisiae, but their hom... more Vacuolar hydrolases have been thoroughly characterized in Saccharomyces cerevisiae, but their homologues in the fungal pathogen Candida albicans have received less attention. The genes APR1 and CPY1 of C. albicans encode putative vacuolar aspartic proteinase and serine carboxypeptidase, respectively. We examined properties of apr1Δ and cpy1Δ mutants, showing that Cpy1p molecular species detected in cell lysates of apr1Δ and its parental strain did not differ in molar mass. Processing of Cpy1p precursor is apparently independent of Apr1p. This is in contrast to S. cerevisiae, where vacuolar aspartic proteinase Pep4p is known to participate in the activation of other vacuolar hydrolases including serine carboxypeptidase. We also found that both apr1Δ and cpy1Δ strains are able to form hyphae in nutrient-rich filamentation media. However, proline as a sole nitrogen source induced filamentation only in cpy1Δ and its parental strain, but not in apr1Δ. This indicates the importance of Apr1p for the morphological transition under nitrogen-limited conditions. Despite that, the ability of apr1Δ to kill murine macrophages was not reduced under the conditions tested.

Research paper thumbnail of Raman Microspectroscopy of the Yeast Vacuoles

Spectroscopy-an International Journal, 2012

In the present work, real ability of a confocal Raman microspectroscopy to monitor chemical compo... more In the present work, real ability of a confocal Raman microspectroscopy to monitor chemical composition of the vacuoles within living yeast cells was investigated and critically assessed. Simple, economical, and practical protocols of the yeast immobilization suitable for less laborious, high-throughput, and spatially resolved Raman measurements were tested for their possible impacts on physiological states and viability of the cells. We have demonstrated that, acquiring Raman spectra from statistically sound sets of immobilized cells and employing advanced multivariate methods for spectral analysis, the chemical composition of the yeast vacuoles can be reliably studied. The most easily and accurately quantifiable seems to be the concentration of polyphosphates which can be unambiguously identified due to unmistakable Raman features. Our approach can be useful for routine, label-free, and noninvasive monitoring of the chemical composition of the vacuoles of living yeasts exposed to various stress factors, the information important in biomedical research of pathogens.

Research paper thumbnail of Intracellular aspartic proteinase Apr1p of Candida albicans is required for morphological transition under nitrogen-limited conditions but not for macrophage killing

Folia Microbiologica, 2014

Vacuolar hydrolases have been thoroughly characterized in Saccharomyces cerevisiae, but their hom... more Vacuolar hydrolases have been thoroughly characterized in Saccharomyces cerevisiae, but their homologues in the fungal pathogen Candida albicans have received less attention. The genes APR1 and CPY1 of C. albicans encode putative vacuolar aspartic proteinase and serine carboxypeptidase, respectively. We examined properties of apr1Δ and cpy1Δ mutants, showing that Cpy1p molecular species detected in cell lysates of apr1Δ and its parental strain did not differ in molar mass. Processing of Cpy1p precursor is apparently independent of Apr1p. This is in contrast to S. cerevisiae, where vacuolar aspartic proteinase Pep4p is known to participate in the activation of other vacuolar hydrolases including serine carboxypeptidase. We also found that both apr1Δ and cpy1Δ strains are able to form hyphae in nutrient-rich filamentation media. However, proline as a sole nitrogen source induced filamentation only in cpy1Δ and its parental strain, but not in apr1Δ. This indicates the importance of Apr1p for the morphological transition under nitrogen-limited conditions. Despite that, the ability of apr1Δ to kill murine macrophages was not reduced under the conditions tested.

Research paper thumbnail of Raman Microspectroscopy of the Yeast Vacuoles

Spectroscopy-an International Journal, 2012

In the present work, real ability of a confocal Raman microspectroscopy to monitor chemical compo... more In the present work, real ability of a confocal Raman microspectroscopy to monitor chemical composition of the vacuoles within living yeast cells was investigated and critically assessed. Simple, economical, and practical protocols of the yeast immobilization suitable for less laborious, high-throughput, and spatially resolved Raman measurements were tested for their possible impacts on physiological states and viability of the cells. We have demonstrated that, acquiring Raman spectra from statistically sound sets of immobilized cells and employing advanced multivariate methods for spectral analysis, the chemical composition of the yeast vacuoles can be reliably studied. The most easily and accurately quantifiable seems to be the concentration of polyphosphates which can be unambiguously identified due to unmistakable Raman features. Our approach can be useful for routine, label-free, and noninvasive monitoring of the chemical composition of the vacuoles of living yeasts exposed to various stress factors, the information important in biomedical research of pathogens.

Log In