Yong-Sang Yoon - Academia.edu (original) (raw)
Papers by Yong-Sang Yoon
Journal of the Korean Society of Propulsion Engineers, 2017
The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compres... more The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compressor are main cause of the impeller damage. In order to prevent the damage, the impeller is designed or modified to have sufficient strength to withstand the operating condition. The damage prevent design will lead to a change of the flow condition and the performance characteristics of the compressor. In this study, the computational analysis were performed to identify the flow and the performance characteristics. The cases are a scalloped and a increased the blade thickness models with a closed type impeller. As the analysis results, the value of head coefficient and total to total efficiency for the increased the blade thickness model was decreased by each 0.5% and 0.1% than the values of the baseline model. Each value for the scalloped model was increased by 0.4% and was decreased by 1.6%.
This paper describes a turbine test program conducted at Seoul National University(SNU). To measu... more This paper describes a turbine test program conducted at Seoul National University(SNU). To measure blades' aerodynamic performance, either linear(2-Dimensional) or annular(3-Dimensional) cascades are often used. However, neither cascade can consider effects such as those due to rotation or rotor-stator interaction. Therefore, a rotating test facility for axial turbines has been designed and built at SNU, and its description is given in this paper. The results from an axial turbine performance test are presented. At the design point, the measured efficiency agrees with the efficiency predicted by a meanline analysis. At off design points, however, the measured and predicted efficiencies diverge. The most likely cause is hypothesized to be the inaccuracy of correlations used in the meanline analysis at off design points.
Journal of Mechanical Science and Technology, 2014
In compression systems, instability has long been an important issue. However, compared to axial ... more In compression systems, instability has long been an important issue. However, compared to axial machines, relatively little work has been done on the stability of centrifugal machines. Especially, many analytical models of stabilities have been developed to predict and control rotating stall, using compressor characteristic. However, stability models for centrifugal compressors are not scarce. Much research on compressor stability has focused on stalling flow coefficient and rotating stall phenomenon at the stalling flow coefficient. Given this situation, this paper presents a stability analysis of centrifugal compressors to predict rotating stall inception as well as the speed and number of cells. This analysis involves the use of compressor geometries, a steady compressor characteristic, and threedimensional flow analysis in the diffuser. The flow field perturbations at the axial inlet duct, impeller, and radial exit duct are determined via an eigenvalue analysis. The predictions are validated against experimental results from compressors with three different diffuser widths. The model accurately predicts the rotating stall inception flow coefficient. As the compressor characteristic becomes less steep with increasing diffuser width, the stalling flow coefficient increases. Also, experiment validates the model prediction that, depending on the dominant mode of flow perturbation, the number of rotating stall cells can be changed from three to two cells in the tested configurations. Furthermore, the cell speed increases as the flow coefficient decreases for a given number of stall cells. However, when the stall cell number is reduced, the cell speed decreases.
Journal of Fluids Engineering, 2006
Experiments have been performed on the low speed research compressor (LSRC) at General Electric A... more Experiments have been performed on the low speed research compressor (LSRC) at General Electric Aircraft Engines to investigate the effects of flow coefficient, stagger angle, and tip clearance on tip vortex. Time resolved casing pressure distributions over the third stage rotor have been acquired with high-frequency-response pressure transducers. Also, tip vortex strength and trajectory have been estimated from the casing pressure fluctuations which have been obtained simultaneously from various axial locations. As flow coefficient decreases, tip vortex gets strengthened and migrates upstream. The stagger angle increase weakens the tip vortex and moves it downstream slightly because the blade loading is decreased. However, tip leakage vortex is influenced mainly by tip clearance, and there exists a “critical” tip clearance which determines the type of tip vortex trajectory (“straight” or “kinked”). As predicted by others, tip vortex gets strengthened with increasing tip clearance. ...
Volume 6: Turbo Expo 2007, Parts A and B, 2007
The effects of impeller inlet tip clearance and diffuser width on centrifugal compressor characte... more The effects of impeller inlet tip clearance and diffuser width on centrifugal compressor characteristic and stability have been experimentally investigated in a centrifugal compressor with a vaneless diffuser. An increase in the impeller inlet tip clearance decreases the overall pressure rise across the compressor, mainly due to the tip clearance loss in the impeller. However, the effect of inlet tip clearance on diffuser pressure rise or compressor stability is weak. A decrease in the diffuser width significantly lowers the compressor pressure rise, especially at hight flow rates. At the component level, the impeller is insensitive to the diffuser width variation, and the pressure rise across the diffuser actually increases as diffuser width is decreased. Upon further investigation, it has been found that the overall compressor characteristic is strongly influenced by the region between the impeller exit and the diffuser inlet. Also, a decrease in the diffuser width delays stall inception by increasing the radial velocity of the flow in the diffuser. Thus, the stalling flow coefficient is more sensitive to the variation in the diffuser than the inlet tip clearance. In all cases, rotating stall consists of two or three cells rotating at about approximately one tenth of the compressor rotational speed. When the number of cells changes from three to two, the rotational speed drops. However, when the number of cells remains constant, the cells’ rotational speed increases as flow coefficient is lowered. All of these trends agree well with predictions from a new stability model developed by the first author.Copyright © 2007 by ASME
Journal of the Korean Society of Propulsion Engineers, 2017
The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compres... more The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compressor are main cause of the impeller damage. In order to prevent the damage, the impeller is designed or modified to have sufficient strength to withstand the operating condition. The damage prevent design will lead to a change of the flow condition and the performance characteristics of the compressor. In this study, the computational analysis were performed to identify the flow and the performance characteristics. The cases are a scalloped and a increased the blade thickness models with a closed type impeller. As the analysis results, the value of head coefficient and total to total efficiency for the increased the blade thickness model was decreased by each 0.5% and 0.1% than the values of the baseline model. Each value for the scalloped model was increased by 0.4% and was decreased by 1.6%.
This paper describes a turbine test program conducted at Seoul National University(SNU). To measu... more This paper describes a turbine test program conducted at Seoul National University(SNU). To measure blades' aerodynamic performance, either linear(2-Dimensional) or annular(3-Dimensional) cascades are often used. However, neither cascade can consider effects such as those due to rotation or rotor-stator interaction. Therefore, a rotating test facility for axial turbines has been designed and built at SNU, and its description is given in this paper. The results from an axial turbine performance test are presented. At the design point, the measured efficiency agrees with the efficiency predicted by a meanline analysis. At off design points, however, the measured and predicted efficiencies diverge. The most likely cause is hypothesized to be the inaccuracy of correlations used in the meanline analysis at off design points.
Journal of Mechanical Science and Technology, 2014
In compression systems, instability has long been an important issue. However, compared to axial ... more In compression systems, instability has long been an important issue. However, compared to axial machines, relatively little work has been done on the stability of centrifugal machines. Especially, many analytical models of stabilities have been developed to predict and control rotating stall, using compressor characteristic. However, stability models for centrifugal compressors are not scarce. Much research on compressor stability has focused on stalling flow coefficient and rotating stall phenomenon at the stalling flow coefficient. Given this situation, this paper presents a stability analysis of centrifugal compressors to predict rotating stall inception as well as the speed and number of cells. This analysis involves the use of compressor geometries, a steady compressor characteristic, and threedimensional flow analysis in the diffuser. The flow field perturbations at the axial inlet duct, impeller, and radial exit duct are determined via an eigenvalue analysis. The predictions are validated against experimental results from compressors with three different diffuser widths. The model accurately predicts the rotating stall inception flow coefficient. As the compressor characteristic becomes less steep with increasing diffuser width, the stalling flow coefficient increases. Also, experiment validates the model prediction that, depending on the dominant mode of flow perturbation, the number of rotating stall cells can be changed from three to two cells in the tested configurations. Furthermore, the cell speed increases as the flow coefficient decreases for a given number of stall cells. However, when the stall cell number is reduced, the cell speed decreases.
Journal of Fluids Engineering, 2006
Experiments have been performed on the low speed research compressor (LSRC) at General Electric A... more Experiments have been performed on the low speed research compressor (LSRC) at General Electric Aircraft Engines to investigate the effects of flow coefficient, stagger angle, and tip clearance on tip vortex. Time resolved casing pressure distributions over the third stage rotor have been acquired with high-frequency-response pressure transducers. Also, tip vortex strength and trajectory have been estimated from the casing pressure fluctuations which have been obtained simultaneously from various axial locations. As flow coefficient decreases, tip vortex gets strengthened and migrates upstream. The stagger angle increase weakens the tip vortex and moves it downstream slightly because the blade loading is decreased. However, tip leakage vortex is influenced mainly by tip clearance, and there exists a “critical” tip clearance which determines the type of tip vortex trajectory (“straight” or “kinked”). As predicted by others, tip vortex gets strengthened with increasing tip clearance. ...
Volume 6: Turbo Expo 2007, Parts A and B, 2007
The effects of impeller inlet tip clearance and diffuser width on centrifugal compressor characte... more The effects of impeller inlet tip clearance and diffuser width on centrifugal compressor characteristic and stability have been experimentally investigated in a centrifugal compressor with a vaneless diffuser. An increase in the impeller inlet tip clearance decreases the overall pressure rise across the compressor, mainly due to the tip clearance loss in the impeller. However, the effect of inlet tip clearance on diffuser pressure rise or compressor stability is weak. A decrease in the diffuser width significantly lowers the compressor pressure rise, especially at hight flow rates. At the component level, the impeller is insensitive to the diffuser width variation, and the pressure rise across the diffuser actually increases as diffuser width is decreased. Upon further investigation, it has been found that the overall compressor characteristic is strongly influenced by the region between the impeller exit and the diffuser inlet. Also, a decrease in the diffuser width delays stall inception by increasing the radial velocity of the flow in the diffuser. Thus, the stalling flow coefficient is more sensitive to the variation in the diffuser than the inlet tip clearance. In all cases, rotating stall consists of two or three cells rotating at about approximately one tenth of the compressor rotational speed. When the number of cells changes from three to two, the rotational speed drops. However, when the number of cells remains constant, the cells’ rotational speed increases as flow coefficient is lowered. All of these trends agree well with predictions from a new stability model developed by the first author.Copyright © 2007 by ASME