Yujin Kim - Academia.edu (original) (raw)

Uploads

Papers by Yujin Kim

Research paper thumbnail of The extremal point process of branching Brownian motion in <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">d</span></span></span></span></span></span></span></span></span></span></span>

We consider a branching Brownian motion in Rd with d ≥ 1 in which the position X t ∈ Rd of a part... more We consider a branching Brownian motion in Rd with d ≥ 1 in which the position X t ∈ Rd of a particle u at time t can be encoded by its direction θ t ∈ Sd−1 and its distance R (u) t to 0. We prove that the extremal point process ∑ δ θ (u) t ,R (u) t −m(d) t (where the sum is over all particles alive at time t and m t is an explicit centring term) converges in distribution to a randomly shifted decorated Poisson point process on Sd−1 × R. More precisely, the so-called clan-leaders form a Cox process with intensity proportional to D∞(θ)e− √ 2rdrdθ, where D∞(θ) is the limit of the derivative martingale in direction θ and the decorations are i.i.d. copies of the decoration process of the standard one-dimensional branching Brownian motion. This proves a conjecture of Stasiński, Berestycki and Mallein (Ann. Inst. H. Poincaré 57:1786–1810, 2021), and builds on that paper and on Kim, Lubetzky and Zeitouni (arXiv:2104.07698).

Research paper thumbnail of The extremal point process of branching Brownian motion in <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">d</span></span></span></span></span></span></span></span></span></span></span>

We consider a branching Brownian motion in Rd with d ≥ 1 in which the position X t ∈ Rd of a part... more We consider a branching Brownian motion in Rd with d ≥ 1 in which the position X t ∈ Rd of a particle u at time t can be encoded by its direction θ t ∈ Sd−1 and its distance R (u) t to 0. We prove that the extremal point process ∑ δ θ (u) t ,R (u) t −m(d) t (where the sum is over all particles alive at time t and m t is an explicit centring term) converges in distribution to a randomly shifted decorated Poisson point process on Sd−1 × R. More precisely, the so-called clan-leaders form a Cox process with intensity proportional to D∞(θ)e− √ 2rdrdθ, where D∞(θ) is the limit of the derivative martingale in direction θ and the decorations are i.i.d. copies of the decoration process of the standard one-dimensional branching Brownian motion. This proves a conjecture of Stasiński, Berestycki and Mallein (Ann. Inst. H. Poincaré 57:1786–1810, 2021), and builds on that paper and on Kim, Lubetzky and Zeitouni (arXiv:2104.07698).

Log In