Zulfirdaus Zakaria - Academia.edu (original) (raw)
Uploads
Papers by Zulfirdaus Zakaria
International Journal of Energy Research, 2019
Additives such as fillers, cross-linkers, and plasticizers have become increasingly important in ... more Additives such as fillers, cross-linkers, and plasticizers have become increasingly important in the polymer nanocomposite production field, especially for enhancing the structural morphology, functional behavior, and final performance of nanocomposites in broad applications. The current work is an overview of the effects of additive substances such as fillers, cross-linkers, and plasticizers in the polymer electrolyte membrane composites applied to fuel cells. A comparative review is conducted by categorizing fillers into several types, and the most popular cross-linkers and plasticizers used in fuel cell membranes are included in this review. The highlighted properties include the proton conductivity, permeability, mechanical properties, thermal properties, crystallinity, and structure of additive-modified nanocomposites. Furthermore, the challenges and future prospects in the additive field are discussed in Section 5.0. This review can provide a reference for researchers seeking specific substances that can be used to enhance nanocomposite properties, especially in membrane fuel cell applications.
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
Renewable and Sustainable Energy Reviews
International Journal of Energy Research
International Journal of Energy Research
A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was... more A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was prepared via quaternization and solution casting method. With the main objective is to performed lower ethanol permeability membrane than Nafion 117 membrane thus can be the potential alternative membrane in future. The physical and chemical properties of the QPVA/GO membrane were investigated via the Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD) and Filed Emission Scanning Electron Microscopy (FESEM). The characterization result shows the good interaction of matrix polymer, GO loading and glutaraldehyde as a crosslinked agent. A maximum conductivity of 1.08 × 10-2 S cm-1 was obtained for QPVA/10wt% GO membrane at 30°C. The ethanol permeability has been reduced until 2.2 × 10-7 cm 2 s-1 with increasing of 10 wt.% GO loading which was lower than Nafion 117 (19.5 × 10-7 cm 2 s-1). The increasing of GO content in composite membranes has append the hydrophobic region which play role as blocking effect to hinder the ethanol crossover. The cell voltage and power density were analyzed at the temperature 30°C. A maximum power density achieved by QPVA/GO membrane was 6.92 mW cm-2 at 10.wt% GO loading which higher than Nafion 117 with only 5.07 mW cm-2 using 2 M ethanol + 2 M KOH at 30°C.
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
Jurnal Kejuruteraan
A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was... more A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was prepared via quaternization and solution casting method. With the main objective is to performed lower ethanol permeability membrane than Nafion 117 membrane thus can be the potential alternative membrane in future. The physical and chemical properties of the QPVA/GO membrane were investigated via the Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD) and Filed Emission Scanning Electron Microscopy (FESEM). The characterization result shows the good interaction of matrix polymer, GO loading and glutaraldehyde as a crosslinked agent. A maximum conductivity of 1.08 × 10-2 S cm-1 was obtained for QPVA/10wt% GO membrane at 30°C. The ethanol permeability has been reduced until 2.2 × 10-7 cm 2 s-1 with increasing of 10 wt.% GO loading which was lower than Nafion 117 (19.5 × 10-7 cm 2 s-1). The increasing of GO content in composite membranes has append the hydrophobic region which play role as blocking effect to hinder the ethanol crossover. The cell voltage and power density were analyzed at the temperature 30°C. A maximum power density achieved by QPVA/GO membrane was 6.92 mW cm-2 at 10.wt% GO loading which higher than Nafion 117 with only 5.07 mW cm-2 using 2 M ethanol + 2 M KOH at 30°C.
International Journal of Energy Research
International Journal of Integrated Engineering
Solid oxide fuel cell (SOFC) technology has advanced significantly in the recent years, and now i... more Solid oxide fuel cell (SOFC) technology has advanced significantly in the recent years, and now is an interest of many renewable energy-related industries to invest. However, the main issue of SOFC is the high operating temperature that negatively influence its performance. To reduce the temperature, a method of using bilayer electrolyte is proposed. In this study, a bilayer electrolyte of Yttria-Stabilised Zirconia (YSZ) and Scandia-Stabilized Zirconia (ScSZ) is used with the objective to reduce the temperature of SOFC to intermediate temperature ranges. To achieve the objective, bilayer YSZ/ScSZ electrolyte has been fabricated at different compositions using cold-pressing method. The pellets were sintered at three different temperature of 1350°C, 1450°C and 1550°C. In this studies, all the prepared pellets were characterized under Scanning Electron Microscopy (SEM) to examine its microstructure, Archimedes Method to measure the density and Electochemical Impedance Spectroscopy (EIS) to measure the conductivity. The results show that all of produced pellets are dense and ionic conductivity showed a rising trend as sintering temperature increases. Based on this study, the best composition is the pellet with combination of 25% YSZ: 75% ScSZ sintered at 1450°C.
International Journal of Energy Research, 2019
Additives such as fillers, cross-linkers, and plasticizers have become increasingly important in ... more Additives such as fillers, cross-linkers, and plasticizers have become increasingly important in the polymer nanocomposite production field, especially for enhancing the structural morphology, functional behavior, and final performance of nanocomposites in broad applications. The current work is an overview of the effects of additive substances such as fillers, cross-linkers, and plasticizers in the polymer electrolyte membrane composites applied to fuel cells. A comparative review is conducted by categorizing fillers into several types, and the most popular cross-linkers and plasticizers used in fuel cell membranes are included in this review. The highlighted properties include the proton conductivity, permeability, mechanical properties, thermal properties, crystallinity, and structure of additive-modified nanocomposites. Furthermore, the challenges and future prospects in the additive field are discussed in Section 5.0. This review can provide a reference for researchers seeking specific substances that can be used to enhance nanocomposite properties, especially in membrane fuel cell applications.
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
Renewable and Sustainable Energy Reviews
International Journal of Energy Research
International Journal of Energy Research
A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was... more A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was prepared via quaternization and solution casting method. With the main objective is to performed lower ethanol permeability membrane than Nafion 117 membrane thus can be the potential alternative membrane in future. The physical and chemical properties of the QPVA/GO membrane were investigated via the Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD) and Filed Emission Scanning Electron Microscopy (FESEM). The characterization result shows the good interaction of matrix polymer, GO loading and glutaraldehyde as a crosslinked agent. A maximum conductivity of 1.08 × 10-2 S cm-1 was obtained for QPVA/10wt% GO membrane at 30°C. The ethanol permeability has been reduced until 2.2 × 10-7 cm 2 s-1 with increasing of 10 wt.% GO loading which was lower than Nafion 117 (19.5 × 10-7 cm 2 s-1). The increasing of GO content in composite membranes has append the hydrophobic region which play role as blocking effect to hinder the ethanol crossover. The cell voltage and power density were analyzed at the temperature 30°C. A maximum power density achieved by QPVA/GO membrane was 6.92 mW cm-2 at 10.wt% GO loading which higher than Nafion 117 with only 5.07 mW cm-2 using 2 M ethanol + 2 M KOH at 30°C.
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
International Journal of Energy Research
Jurnal Kejuruteraan
A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was... more A crosslinked of Quaternized Poly (vinyl alcohol)/Graphene oxide (QPVA/GO) composite membrane was prepared via quaternization and solution casting method. With the main objective is to performed lower ethanol permeability membrane than Nafion 117 membrane thus can be the potential alternative membrane in future. The physical and chemical properties of the QPVA/GO membrane were investigated via the Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD) and Filed Emission Scanning Electron Microscopy (FESEM). The characterization result shows the good interaction of matrix polymer, GO loading and glutaraldehyde as a crosslinked agent. A maximum conductivity of 1.08 × 10-2 S cm-1 was obtained for QPVA/10wt% GO membrane at 30°C. The ethanol permeability has been reduced until 2.2 × 10-7 cm 2 s-1 with increasing of 10 wt.% GO loading which was lower than Nafion 117 (19.5 × 10-7 cm 2 s-1). The increasing of GO content in composite membranes has append the hydrophobic region which play role as blocking effect to hinder the ethanol crossover. The cell voltage and power density were analyzed at the temperature 30°C. A maximum power density achieved by QPVA/GO membrane was 6.92 mW cm-2 at 10.wt% GO loading which higher than Nafion 117 with only 5.07 mW cm-2 using 2 M ethanol + 2 M KOH at 30°C.
International Journal of Energy Research
International Journal of Integrated Engineering
Solid oxide fuel cell (SOFC) technology has advanced significantly in the recent years, and now i... more Solid oxide fuel cell (SOFC) technology has advanced significantly in the recent years, and now is an interest of many renewable energy-related industries to invest. However, the main issue of SOFC is the high operating temperature that negatively influence its performance. To reduce the temperature, a method of using bilayer electrolyte is proposed. In this study, a bilayer electrolyte of Yttria-Stabilised Zirconia (YSZ) and Scandia-Stabilized Zirconia (ScSZ) is used with the objective to reduce the temperature of SOFC to intermediate temperature ranges. To achieve the objective, bilayer YSZ/ScSZ electrolyte has been fabricated at different compositions using cold-pressing method. The pellets were sintered at three different temperature of 1350°C, 1450°C and 1550°C. In this studies, all the prepared pellets were characterized under Scanning Electron Microscopy (SEM) to examine its microstructure, Archimedes Method to measure the density and Electochemical Impedance Spectroscopy (EIS) to measure the conductivity. The results show that all of produced pellets are dense and ionic conductivity showed a rising trend as sintering temperature increases. Based on this study, the best composition is the pellet with combination of 25% YSZ: 75% ScSZ sintered at 1450°C.