M. Zembala - Academia.edu (original) (raw)

Uploads

Papers by M. Zembala

Research paper thumbnail of Polyelectrolyte adsorption layers studied by streaming potential and particle deposition

Journal of Colloid and Interface Science, 2006

Adsorption of a cationic polyelectrolyte, polyallylamine hydrochloride (PAH), having a molecular ... more Adsorption of a cationic polyelectrolyte, polyallylamine hydrochloride (PAH), having a molecular weight of 70,000 on mica was characterized by the streaming potential method and by deposition of negative polystyrene latex particles. Formation of PAH layers was followed by determining the apparent zeta potential of surface ζ as function of bulk PAH concentration. The zeta potential was calculated from the streaming potential measured in the parallel-plate channel formed by two mica plates precovered by the polyelectrolyte. The experimental data were expressed as the dependence of the reduced zeta potential ζ /ζ 0 on the PAH coverage Θ PAH , calculated using the convective diffusion theory. It was found that for the ionic strength of 10 −2 M, the dependence of ζ /ζ 0 on Θ PAH can be reflected by the theoretical model formulated previously for surfaces covered by colloid particles. The electrokinetic measurements were complemented by particle deposition experiments on PAH-covered mica surfaces. A direct correlation between the polymer coverage and the initial deposition rate of particles, as well as the jamming coverage, was found. For Θ PAH > 0.3 the initial deposition rate attained the value predicted from the convective diffusion theory for homogeneous surfaces. The initial deposition rates for surfaces modified by PAH were compared with previous experimental and theoretical results obtained for heterogeneous surfaces formed by preadsorption of colloid particles. It was revealed that negative latex deposition occurred at surfaces exhibiting negative apparent zeta potential, which explained the anomalous deposition of particles observed in previous works. It was suggested that the combined electrokinetic and particle deposition methods can be used for detecting adsorbed polyelectrolytes at surfaces for coverage range of a percent. This enables one to measure bulk polyelectrolyte concentrations at the level of 0.05 ppm. .pl (M. Zembala). of electrophoretic mobility of colloid particles covered by multilayers or of streaming potential and streaming current determined by exploiting channel flows . Using this method, PE multilayer formation and degradation were studied using mica as model substrate .

Research paper thumbnail of Characterization of polyelectrolyte multilayers by the streaming potential method

Langmuir, 2004

Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in th... more Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in the parallel-plate channel setup. The technique was calibrated by performing model measurements of streaming potential by using monodisperse latex particles. Two types of polyelectrolytes were used in our studies: poly(allylamine) hydrochloride (PAH), of a cationic type, and poly(sodium 4-styrenesulfonate) (PSS) of an anionic type, both having molecular weight of 70 000. The bulk characteristics of polymers were determined by measuring the specific density, diffusion coefficient for various ionic strengths, and zeta potential. These measurements as well as molecular dynamic simulations of chain shape and configurations suggested that the molecules assume an extended, wormlike shape in the bulk. Accordingly, the diffusion coefficient was interpreted in terms of a simple hydrodynamic model pertinent to flexible rods. These data allowed a proper interpretation of polyelectrolyte multilayer adsorption from NaCl solutions of various concentrations or from 10 -3 M Tris buffer. After completing a bilayer, periodic variations in the apparent zeta potential between positive and negative values were observed for multilayers terminated by PAH and PSS, respectively. These limiting zeta potential values correlated quite well with the zeta potential of the polymers in the bulk. The stability of polyelectrolyte films against prolonged washing (reaching 26 h) also was determined using the streaming potential method. It was demonstrated that the PSS layer was considerably more resistant to washing, compared to the PAH layer. It was concluded that the experimental data were consistent with the model postulating particle-like adsorption of polyelectrolytes with little chain interpenetration. It also was concluded that due to high sensitivity, the electrokinetic method applied can be effectively used for quantitative studies of polyelectrolyte adsorption, desorption, and reconformation.

Research paper thumbnail of Polyelectrolyte adsorption layers studied by streaming potential and particle deposition

Journal of Colloid and Interface Science, 2006

Adsorption of a cationic polyelectrolyte, polyallylamine hydrochloride (PAH), having a molecular ... more Adsorption of a cationic polyelectrolyte, polyallylamine hydrochloride (PAH), having a molecular weight of 70,000 on mica was characterized by the streaming potential method and by deposition of negative polystyrene latex particles. Formation of PAH layers was followed by determining the apparent zeta potential of surface ζ as function of bulk PAH concentration. The zeta potential was calculated from the streaming potential measured in the parallel-plate channel formed by two mica plates precovered by the polyelectrolyte. The experimental data were expressed as the dependence of the reduced zeta potential ζ /ζ 0 on the PAH coverage Θ PAH , calculated using the convective diffusion theory. It was found that for the ionic strength of 10 −2 M, the dependence of ζ /ζ 0 on Θ PAH can be reflected by the theoretical model formulated previously for surfaces covered by colloid particles. The electrokinetic measurements were complemented by particle deposition experiments on PAH-covered mica surfaces. A direct correlation between the polymer coverage and the initial deposition rate of particles, as well as the jamming coverage, was found. For Θ PAH > 0.3 the initial deposition rate attained the value predicted from the convective diffusion theory for homogeneous surfaces. The initial deposition rates for surfaces modified by PAH were compared with previous experimental and theoretical results obtained for heterogeneous surfaces formed by preadsorption of colloid particles. It was revealed that negative latex deposition occurred at surfaces exhibiting negative apparent zeta potential, which explained the anomalous deposition of particles observed in previous works. It was suggested that the combined electrokinetic and particle deposition methods can be used for detecting adsorbed polyelectrolytes at surfaces for coverage range of a percent. This enables one to measure bulk polyelectrolyte concentrations at the level of 0.05 ppm. .pl (M. Zembala). of electrophoretic mobility of colloid particles covered by multilayers or of streaming potential and streaming current determined by exploiting channel flows . Using this method, PE multilayer formation and degradation were studied using mica as model substrate .

Research paper thumbnail of Characterization of polyelectrolyte multilayers by the streaming potential method

Langmuir, 2004

Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in th... more Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in the parallel-plate channel setup. The technique was calibrated by performing model measurements of streaming potential by using monodisperse latex particles. Two types of polyelectrolytes were used in our studies: poly(allylamine) hydrochloride (PAH), of a cationic type, and poly(sodium 4-styrenesulfonate) (PSS) of an anionic type, both having molecular weight of 70 000. The bulk characteristics of polymers were determined by measuring the specific density, diffusion coefficient for various ionic strengths, and zeta potential. These measurements as well as molecular dynamic simulations of chain shape and configurations suggested that the molecules assume an extended, wormlike shape in the bulk. Accordingly, the diffusion coefficient was interpreted in terms of a simple hydrodynamic model pertinent to flexible rods. These data allowed a proper interpretation of polyelectrolyte multilayer adsorption from NaCl solutions of various concentrations or from 10 -3 M Tris buffer. After completing a bilayer, periodic variations in the apparent zeta potential between positive and negative values were observed for multilayers terminated by PAH and PSS, respectively. These limiting zeta potential values correlated quite well with the zeta potential of the polymers in the bulk. The stability of polyelectrolyte films against prolonged washing (reaching 26 h) also was determined using the streaming potential method. It was demonstrated that the PSS layer was considerably more resistant to washing, compared to the PAH layer. It was concluded that the experimental data were consistent with the model postulating particle-like adsorption of polyelectrolytes with little chain interpenetration. It also was concluded that due to high sensitivity, the electrokinetic method applied can be effectively used for quantitative studies of polyelectrolyte adsorption, desorption, and reconformation.

Log In