abdur razzaq - Academia.edu (original) (raw)

Papers by abdur razzaq

Research paper thumbnail of OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Rb2SnBr6: A FIRST PRINCIPLES CALCULATIONS

Global Journal of Material Science and Engineering, 2020

The aim of this research work is to investigate the structural, mechanical, electronic and optica... more The aim of this research work is to investigate the structural, mechanical, electronic and optical properties of double perovskite Rb2SnBr6 by density functional theory (DFT) calculations. The calculated lattice parameter is in sensible agreement with the on the market experimental information. From Paugh’s ductility index (B/G), it shows that Rb2SnBr6 is brittle at ambient conditions. The Zener anisotropy factor confirms the anisotropic nature of this compound. The calculated energy band structures indicate that Rb2SnBr6 is a direct band gap semiconductor, with the band gap of 1.228 eV using PBE potentials. In this work, the optical properties such as dielectric constants, refractive index, conductivity, extinction coefficient, loss function, and reflectivity have been studied and reported for radiation up to 20 eV. It is found that the reflectivity is about 50% in the ultraviolet (UV) region regions up to ~11 eV of incident radiation in the ultraviolet region.

Research paper thumbnail of OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Rb2SnBr6 : A FIRST PRINCIPLES CALCULATIONS

GLOBAL JOURNAL OF MATERIAL SCIENCE & ENGINEERING, 2020

The aim of this research work is to investigate the structural, mechanical, electronic and optica... more The aim of this research work is to investigate the structural, mechanical, electronic and optical properties of double perovskite Rb2SnBr6 by density functional theory (DFT) calculations. The calculated lattice parameter is in sensible agreement with the on the market experimental information. From Paugh's ductility index (B/G), it shows that Rb2SnBr6 is brittle at ambient conditions. The Zener anisotropy factor confirms the anisotropic nature of this compound. The calculated energy band structures indicate that Rb2SnBr6 is a direct band gap semiconductor, with the band gap of 1.228 eV using PBE potentials. In this work, the optical properties such as dielectric constants, refractive index, conductivity, extinction coefficient, loss function, and reflectivity have been studied and reported for radiation up to 20 eV. It is found that the reflectivity is about 50% in the ultraviolet (UV) region regions up to ~11 eV of incident radiation.

Research paper thumbnail of STRUCTURAL, MECHANICAL AND OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Cs2SnBr6 USING FIRST PRINCIPLES CALCULATION

GLOBAL JOURNAL OF MATERIAL SCIENCE & ENGINEERING, 2020

The structural, mechanical, electronic and optical properties of double perovskite Cs2SnBr6 have ... more The structural, mechanical, electronic and optical properties of double perovskite Cs2SnBr6 have been measured by density functional theory (DFT) calculations. The calculated value of lattice parameter is perfectly tailored with the experimental data. The material shows brittle behavior by Paugh's ductility index (B/G) at ambient condition. The anisotropic nature of this compound is endorsed by the calculation of Zener anisotropy factor. The direct band gap semiconducting nature with the value of gap is 1.33 eV using PBE potential is also corroborated by electronics properties. Eventually, different optical properties of Cs2SnBr6 such as dielectric constants, refractive index, conductivity, absorption, reflectivity and loss function have been observed and disclose for radiation up to 20 eV. Finally the optical properties corroborate the optoelectronic applications of this compound as all as elite candidate for photovoltaic perovskite solar cells.

Research paper thumbnail of OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Rb2SnBr6: A FIRST PRINCIPLES CALCULATIONS

Global Journal of Material Science and Engineering, 2020

The aim of this research work is to investigate the structural, mechanical, electronic and optica... more The aim of this research work is to investigate the structural, mechanical, electronic and optical properties of double perovskite Rb2SnBr6 by density functional theory (DFT) calculations. The calculated lattice parameter is in sensible agreement with the on the market experimental information. From Paugh’s ductility index (B/G), it shows that Rb2SnBr6 is brittle at ambient conditions. The Zener anisotropy factor confirms the anisotropic nature of this compound. The calculated energy band structures indicate that Rb2SnBr6 is a direct band gap semiconductor, with the band gap of 1.228 eV using PBE potentials. In this work, the optical properties such as dielectric constants, refractive index, conductivity, extinction coefficient, loss function, and reflectivity have been studied and reported for radiation up to 20 eV. It is found that the reflectivity is about 50% in the ultraviolet (UV) region regions up to ~11 eV of incident radiation in the ultraviolet region.

Research paper thumbnail of OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Rb2SnBr6 : A FIRST PRINCIPLES CALCULATIONS

GLOBAL JOURNAL OF MATERIAL SCIENCE & ENGINEERING, 2020

The aim of this research work is to investigate the structural, mechanical, electronic and optica... more The aim of this research work is to investigate the structural, mechanical, electronic and optical properties of double perovskite Rb2SnBr6 by density functional theory (DFT) calculations. The calculated lattice parameter is in sensible agreement with the on the market experimental information. From Paugh's ductility index (B/G), it shows that Rb2SnBr6 is brittle at ambient conditions. The Zener anisotropy factor confirms the anisotropic nature of this compound. The calculated energy band structures indicate that Rb2SnBr6 is a direct band gap semiconductor, with the band gap of 1.228 eV using PBE potentials. In this work, the optical properties such as dielectric constants, refractive index, conductivity, extinction coefficient, loss function, and reflectivity have been studied and reported for radiation up to 20 eV. It is found that the reflectivity is about 50% in the ultraviolet (UV) region regions up to ~11 eV of incident radiation.

Research paper thumbnail of STRUCTURAL, MECHANICAL AND OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Cs2SnBr6 USING FIRST PRINCIPLES CALCULATION

GLOBAL JOURNAL OF MATERIAL SCIENCE & ENGINEERING, 2020

The structural, mechanical, electronic and optical properties of double perovskite Cs2SnBr6 have ... more The structural, mechanical, electronic and optical properties of double perovskite Cs2SnBr6 have been measured by density functional theory (DFT) calculations. The calculated value of lattice parameter is perfectly tailored with the experimental data. The material shows brittle behavior by Paugh's ductility index (B/G) at ambient condition. The anisotropic nature of this compound is endorsed by the calculation of Zener anisotropy factor. The direct band gap semiconducting nature with the value of gap is 1.33 eV using PBE potential is also corroborated by electronics properties. Eventually, different optical properties of Cs2SnBr6 such as dielectric constants, refractive index, conductivity, absorption, reflectivity and loss function have been observed and disclose for radiation up to 20 eV. Finally the optical properties corroborate the optoelectronic applications of this compound as all as elite candidate for photovoltaic perovskite solar cells.