lulu aisy - Academia.edu (original) (raw)

Uploads

Papers by lulu aisy

Research paper thumbnail of A study of the behavior of boron diffusion in plain carbon steels

Journal of Materials Engineering and Performance, Jan 29, 2000

Boronizing treatment of ferrous materials has been widely employed by industry as a surface-stren... more Boronizing treatment of ferrous materials has been widely employed by industry as a surface-strengthening technology for inhibition of corrosion, wear and erosion. Pack boronization using a pack composition that produces a graded boride microstructure has been studied using AISI 1018 and 1045 steels. Carbon in these alloys creates a resistance to boron diffusion because a carbon-enriched zone forms in front of the boride layen The carbon concentration at the boride/pearlite interface was found to be as high as 3.0% in AISI 1045 steel. No significant layer phenomena could be distinguished inside the boron layer using the pack composition developed during this research. This result is significant because a graded microstructure with a continuous variation of the boron composition has been produced. Evidence developed during this study suggests that the boride layer consists of a mixture of FeB, Fe2B, and FeBx, which is probably FeB19. Analysis determined a measure of the resistance of carbon to boron diffusion at the boride/pearlite interface.

Research paper thumbnail of A study of the behavior of boron diffusion in plain carbon steels

Journal of Materials Engineering and Performance, Jan 29, 2000

Boronizing treatment of ferrous materials has been widely employed by industry as a surface-stren... more Boronizing treatment of ferrous materials has been widely employed by industry as a surface-strengthening technology for inhibition of corrosion, wear and erosion. Pack boronization using a pack composition that produces a graded boride microstructure has been studied using AISI 1018 and 1045 steels. Carbon in these alloys creates a resistance to boron diffusion because a carbon-enriched zone forms in front of the boride layen The carbon concentration at the boride/pearlite interface was found to be as high as 3.0% in AISI 1045 steel. No significant layer phenomena could be distinguished inside the boron layer using the pack composition developed during this research. This result is significant because a graded microstructure with a continuous variation of the boron composition has been produced. Evidence developed during this study suggests that the boride layer consists of a mixture of FeB, Fe2B, and FeBx, which is probably FeB19. Analysis determined a measure of the resistance of carbon to boron diffusion at the boride/pearlite interface.

Log In