federico ranaldi - Academia.edu (original) (raw)

Papers by federico ranaldi

Research paper thumbnail of Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL Translation

arXiv (Cornell University), Feb 12, 2024

Understanding textual description to generate code seems to be an achieved capability of instruct... more Understanding textual description to generate code seems to be an achieved capability of instruction-following Large Language Models (LLMs) in zero-shot scenario. However, there is a severe possibility that this translation ability may be influenced by having seen target textual descriptions and the related code. This effect is known as Data Contamination. In this study, we investigate the impact of Data Contamination on the performance of GPT-3.5 in the Text-to-SQL code-generating tasks. Hence, we introduce a novel method to detect Data Contamination in GPTs and examine GPT-3.5's Text-to-SQL performances using the known Spider Dataset and our new unfamiliar dataset Termite. Furthermore, we analyze GPT-3.5's efficacy on databases with modified information via an adversarial table disconnection (ATD) approach, complicating Textto-SQL tasks by removing structural pieces of information from the database. Our results indicate a significant performance drop in GPT-3.5 on the unfamiliar Termite dataset, even with ATD modifications, highlighting the effect of Data Contamination on LLMs in Text-to-SQL translation tasks.

Research paper thumbnail of Exploring Linguistic Properties of Monolingual BERTs with Typological Classification among Languages

arXiv (Cornell University), May 3, 2023

The impressive achievements of transformers force NLP researchers to delve into how these models ... more The impressive achievements of transformers force NLP researchers to delve into how these models represent the underlying structure of natural language. In this paper, we propose a novel standpoint to investigate the above issue: using typological similarities among languages to observe how their respective monolingual models encode structural information. We aim to layer-wise compare transformers for typologically similar languages to observe whether these similarities emerge for particular layers. For this investigation, we propose to use Centered Kernel Alignment to measure similarity among weight matrices. We found that syntactic typological similarity is consistent with the similarity between the weights in the middle layers, which are the pretrained BERT layers to which syntax encoding is generally attributed. Moreover, we observe that a domain adaptation on semantically equivalent texts enhances this similarity among weight matrices.

Research paper thumbnail of Shedding Light on the Dark Web: Authorship Attribution in Radical Forums

Information

Online users tend to hide their real identities by adopting different names on the Internet. On F... more Online users tend to hide their real identities by adopting different names on the Internet. On Facebook or LinkedIn, for example, people usually appear with their real names. On other standard websites, such as forums, people often use nicknames to protect their real identities. Aliases are used when users are trying to protect their anonymity. This can be a challenge to law enforcement trying to identify users who often change nicknames. In unmonitored contexts, such as the dark web, users expect strong identity protection. Thus, without censorship, these users may create parallel social networks where they can engage in potentially malicious activities that could pose security threats. In this paper, we propose a solution to the need to recognize people who anonymize themselves behind nicknames—the authorship attribution (AA) task—in the challenging context of the dark web: specifically, an English-language Islamic forum dedicated to discussions of issues related to the Islamic w...

Research paper thumbnail of Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL Translation

arXiv (Cornell University), Feb 12, 2024

Understanding textual description to generate code seems to be an achieved capability of instruct... more Understanding textual description to generate code seems to be an achieved capability of instruction-following Large Language Models (LLMs) in zero-shot scenario. However, there is a severe possibility that this translation ability may be influenced by having seen target textual descriptions and the related code. This effect is known as Data Contamination. In this study, we investigate the impact of Data Contamination on the performance of GPT-3.5 in the Text-to-SQL code-generating tasks. Hence, we introduce a novel method to detect Data Contamination in GPTs and examine GPT-3.5's Text-to-SQL performances using the known Spider Dataset and our new unfamiliar dataset Termite. Furthermore, we analyze GPT-3.5's efficacy on databases with modified information via an adversarial table disconnection (ATD) approach, complicating Textto-SQL tasks by removing structural pieces of information from the database. Our results indicate a significant performance drop in GPT-3.5 on the unfamiliar Termite dataset, even with ATD modifications, highlighting the effect of Data Contamination on LLMs in Text-to-SQL translation tasks.

Research paper thumbnail of Exploring Linguistic Properties of Monolingual BERTs with Typological Classification among Languages

arXiv (Cornell University), May 3, 2023

The impressive achievements of transformers force NLP researchers to delve into how these models ... more The impressive achievements of transformers force NLP researchers to delve into how these models represent the underlying structure of natural language. In this paper, we propose a novel standpoint to investigate the above issue: using typological similarities among languages to observe how their respective monolingual models encode structural information. We aim to layer-wise compare transformers for typologically similar languages to observe whether these similarities emerge for particular layers. For this investigation, we propose to use Centered Kernel Alignment to measure similarity among weight matrices. We found that syntactic typological similarity is consistent with the similarity between the weights in the middle layers, which are the pretrained BERT layers to which syntax encoding is generally attributed. Moreover, we observe that a domain adaptation on semantically equivalent texts enhances this similarity among weight matrices.

Research paper thumbnail of Shedding Light on the Dark Web: Authorship Attribution in Radical Forums

Information

Online users tend to hide their real identities by adopting different names on the Internet. On F... more Online users tend to hide their real identities by adopting different names on the Internet. On Facebook or LinkedIn, for example, people usually appear with their real names. On other standard websites, such as forums, people often use nicknames to protect their real identities. Aliases are used when users are trying to protect their anonymity. This can be a challenge to law enforcement trying to identify users who often change nicknames. In unmonitored contexts, such as the dark web, users expect strong identity protection. Thus, without censorship, these users may create parallel social networks where they can engage in potentially malicious activities that could pose security threats. In this paper, we propose a solution to the need to recognize people who anonymize themselves behind nicknames—the authorship attribution (AA) task—in the challenging context of the dark web: specifically, an English-language Islamic forum dedicated to discussions of issues related to the Islamic w...