junghoon Kim - Academia.edu (original) (raw)
Uploads
Papers by junghoon Kim
Canadian Journal of Physics, 1999
Canonical transformations using the idea of quantum generating functions are applied to construct... more Canonical transformations using the idea of quantum generating functions are applied to construct a quantum Hamilton-Jacobi theory, based on the analogy with the classical case. An operator and a c-number form of the time-dependent quantum Hamilton-Jacobi equation are derived and used to find dynamical solutions of quantum problems. The phase-space picture of quantum mechanics is discussed in connection with the present theory.PACS Nos.: 03.65-w, 03.65Ca, 03.65Ge
Advanced Robotics, 2011
ABSTRACT This paper describes online balance controllers for running in a humanoid robot and veri... more ABSTRACT This paper describes online balance controllers for running in a humanoid robot and verifies the validity of the proposed controllers via experiments. To realize running in the humanoid robot, the overall control structure is composed of an offline controller and an online controller. The main purpose of the online controller is to maintain dynamic stability while the humanoid robot hops or runs. The online controller is composed of the posture balance control in the sagittal plane, the transient balance control in the frontal plane and the swing ankle pitch compensator in the sagittal plane. The posture balance controller makes the robot maintain balance using an inertial measurement unit sensor in the sagittal plane. The transient balance controller makes the robot keep its balance in the frontal plane using gyros attached to each upper leg. The swing ankle pitch compensator prevents the swing foot from hitting the ground at unexpected times while the robot runs forward. HUBO2 was used for the running experiment. It was designed for the running experiment, and is lighter and more powerful than the previous walking robot platform, HUBO. With the proposed controllers, HUBO2 ran forward stably at a maximum speed of 3.24 km/h and this result verified the effectiveness of the proposed algorithm. In addition, in order to show the contribution of the stability, the running performance according to the existence of each controller was described by experiment.
Canadian Journal of Physics, 1999
Canonical transformations using the idea of quantum generating functions are applied to construct... more Canonical transformations using the idea of quantum generating functions are applied to construct a quantum Hamilton-Jacobi theory, based on the analogy with the classical case. An operator and a c-number form of the time-dependent quantum Hamilton-Jacobi equation are derived and used to find dynamical solutions of quantum problems. The phase-space picture of quantum mechanics is discussed in connection with the present theory.PACS Nos.: 03.65-w, 03.65Ca, 03.65Ge
Advanced Robotics, 2011
ABSTRACT This paper describes online balance controllers for running in a humanoid robot and veri... more ABSTRACT This paper describes online balance controllers for running in a humanoid robot and verifies the validity of the proposed controllers via experiments. To realize running in the humanoid robot, the overall control structure is composed of an offline controller and an online controller. The main purpose of the online controller is to maintain dynamic stability while the humanoid robot hops or runs. The online controller is composed of the posture balance control in the sagittal plane, the transient balance control in the frontal plane and the swing ankle pitch compensator in the sagittal plane. The posture balance controller makes the robot maintain balance using an inertial measurement unit sensor in the sagittal plane. The transient balance controller makes the robot keep its balance in the frontal plane using gyros attached to each upper leg. The swing ankle pitch compensator prevents the swing foot from hitting the ground at unexpected times while the robot runs forward. HUBO2 was used for the running experiment. It was designed for the running experiment, and is lighter and more powerful than the previous walking robot platform, HUBO. With the proposed controllers, HUBO2 ran forward stably at a maximum speed of 3.24 km/h and this result verified the effectiveness of the proposed algorithm. In addition, in order to show the contribution of the stability, the running performance according to the existence of each controller was described by experiment.