kyle hamilton - Academia.edu (original) (raw)
Papers by kyle hamilton
Companion Proceedings of the ACM Web Conference 2024 (WWW ’24 Companion),, 2024
While the use of machine learning for the detection of propaganda techniques in text has garnered... more While the use of machine learning for the detection of propaganda techniques in text has garnered considerable attention, most approaches focus on "black-box" solutions with opaque inner workings. Interpretable approaches provide a solution, however, they depend on careful feature engineering and costly expert annotated data. Additionally, language features specific to propagandistic text are generally the focus of rhetoricians or linguists, and there is no data set labeled with such features suitable for machine learning. This study codifies 22 rhetorical and linguistic features identified in literature related to the language of persuasion for the purpose of annotating an existing data set labeled with propaganda techniques. To help human experts annotate natural language sentences with these features, RhetAnn, a web application, was specifically designed to minimize an otherwise considerable mental effort. Finally, a small set of annotated data was used to fine-tune GPT-3.5, a generative large language model (LLM), to annotate the remaining data while optimizing for financial cost and classification accuracy. This study demonstrates how combining a small number of human annotated examples with GPT can be an effective strategy for scaling the annotation process at a fraction of the cost of traditional annotation relying solely on human experts. The results are on par with the best performing model at the time of writing, namely GPT-4, at 10x less the cost. Our contribution is a set of features, their properties, definitions, and examples in a machine-readable format, along with the code for RhetAnn and the GPT prompts and fine-tuning procedures for advancing state-of-the-art interpretable propaganda technique detection. CCS CONCEPTS • Computing methodologies → Information extraction.
Semantic Web
Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning w... more Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, with the aim of answering the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to higher...
Advocates for Neuro-Symbolic AI (NeSy) assert that combining deep learning with symbolic reasonin... more Advocates for Neuro-Symbolic AI (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, challenges and future directions, and aim to answer the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to h...
In this early-stage research, a multidisciplinary approach is presented for the detection of prop... more In this early-stage research, a multidisciplinary approach is presented for the detection of propaganda in the media, and for modeling the spread of propaganda and disinformation using semantic web and graph theory. An ontology will be designed which has the theoretical underpinnings from multiple disciplines including the social sciences and epidemiology. An additional objective of this work is to automate triple extraction from unstructured text which surpasses the state-of-the-art performance.
Companion Proceedings of the ACM Web Conference 2024 (WWW ’24 Companion),, 2024
While the use of machine learning for the detection of propaganda techniques in text has garnered... more While the use of machine learning for the detection of propaganda techniques in text has garnered considerable attention, most approaches focus on "black-box" solutions with opaque inner workings. Interpretable approaches provide a solution, however, they depend on careful feature engineering and costly expert annotated data. Additionally, language features specific to propagandistic text are generally the focus of rhetoricians or linguists, and there is no data set labeled with such features suitable for machine learning. This study codifies 22 rhetorical and linguistic features identified in literature related to the language of persuasion for the purpose of annotating an existing data set labeled with propaganda techniques. To help human experts annotate natural language sentences with these features, RhetAnn, a web application, was specifically designed to minimize an otherwise considerable mental effort. Finally, a small set of annotated data was used to fine-tune GPT-3.5, a generative large language model (LLM), to annotate the remaining data while optimizing for financial cost and classification accuracy. This study demonstrates how combining a small number of human annotated examples with GPT can be an effective strategy for scaling the annotation process at a fraction of the cost of traditional annotation relying solely on human experts. The results are on par with the best performing model at the time of writing, namely GPT-4, at 10x less the cost. Our contribution is a set of features, their properties, definitions, and examples in a machine-readable format, along with the code for RhetAnn and the GPT prompts and fine-tuning procedures for advancing state-of-the-art interpretable propaganda technique detection. CCS CONCEPTS • Computing methodologies → Information extraction.
Semantic Web
Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning w... more Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, with the aim of answering the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to higher...
Advocates for Neuro-Symbolic AI (NeSy) assert that combining deep learning with symbolic reasonin... more Advocates for Neuro-Symbolic AI (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, challenges and future directions, and aim to answer the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to h...
In this early-stage research, a multidisciplinary approach is presented for the detection of prop... more In this early-stage research, a multidisciplinary approach is presented for the detection of propaganda in the media, and for modeling the spread of propaganda and disinformation using semantic web and graph theory. An ontology will be designed which has the theoretical underpinnings from multiple disciplines including the social sciences and epidemiology. An additional objective of this work is to automate triple extraction from unstructured text which surpasses the state-of-the-art performance.