man U - Academia.edu (original) (raw)
Uploads
Papers by man U
—Glycoside trimming enzymes are crucially important in a broad range of metabolic pathways, inclu... more —Glycoside trimming enzymes are crucially important in a broad range of metabolic pathways, including glycoprotein and glyco-lipid processing and carbohydrate digestion in the intestinal tract. Amongst the large array of enzymes, glucosidases are postulated to be a powerful therapeutic target since they catalyze the cleavage of glycosidic bonds releasing glucose from the non-reducing end of an oligo-or polysaccharide chain involved in glycoprotein biosynthesis. Glucosidase inhibitors are currently of interest owing to their promising therapeutic potential in the treatment of disorders such as diabetes, human immunodeficiency virus (HIV) infection, metastatic cancer, and lyso-somal storage diseases. Glucosidase inhibitors have also been useful in probing biochemical pathways and understanding structure–activity relationship patterns required for mimicking the enzyme transition state. Amongst the various types of glucosidase inhibitors, disaccharides, iminosugars, carbasugars, thiosugars, and non-sugar derivatives have received great attention. This review is aimed at highlighting the main chemical classes of glucosidase inhibitors, as well as their biological activities toward a-and b-glucosidases, but it is not intended to be an exhaustive review on the subject. Inhibition data on the compounds covered in this review are included in a tabular form as an Appendix, where the type of each glucosidase associated with a specific inhibitor is also given.
—Glycoside trimming enzymes are crucially important in a broad range of metabolic pathways, inclu... more —Glycoside trimming enzymes are crucially important in a broad range of metabolic pathways, including glycoprotein and glyco-lipid processing and carbohydrate digestion in the intestinal tract. Amongst the large array of enzymes, glucosidases are postulated to be a powerful therapeutic target since they catalyze the cleavage of glycosidic bonds releasing glucose from the non-reducing end of an oligo-or polysaccharide chain involved in glycoprotein biosynthesis. Glucosidase inhibitors are currently of interest owing to their promising therapeutic potential in the treatment of disorders such as diabetes, human immunodeficiency virus (HIV) infection, metastatic cancer, and lyso-somal storage diseases. Glucosidase inhibitors have also been useful in probing biochemical pathways and understanding structure–activity relationship patterns required for mimicking the enzyme transition state. Amongst the various types of glucosidase inhibitors, disaccharides, iminosugars, carbasugars, thiosugars, and non-sugar derivatives have received great attention. This review is aimed at highlighting the main chemical classes of glucosidase inhibitors, as well as their biological activities toward a-and b-glucosidases, but it is not intended to be an exhaustive review on the subject. Inhibition data on the compounds covered in this review are included in a tabular form as an Appendix, where the type of each glucosidase associated with a specific inhibitor is also given.